Giovanni Zocchi, Flavio Fontanelli, Sonia Spinelli, Laura Sturla, Mario Passalacqua, José Cristobal González Urra, Simona Delsante, Elena Zocchi
{"title":"热测量支持ABA/LANCL1-2激素/受体系统在产热中的作用。","authors":"Giovanni Zocchi, Flavio Fontanelli, Sonia Spinelli, Laura Sturla, Mario Passalacqua, José Cristobal González Urra, Simona Delsante, Elena Zocchi","doi":"10.1098/rsob.240107","DOIUrl":null,"url":null,"abstract":"<p><p>Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 12","pages":"240107"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermal measurements support a role of the ABA/LANCL1-2 hormone/receptors system in thermogenesis.\",\"authors\":\"Giovanni Zocchi, Flavio Fontanelli, Sonia Spinelli, Laura Sturla, Mario Passalacqua, José Cristobal González Urra, Simona Delsante, Elena Zocchi\",\"doi\":\"10.1098/rsob.240107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"14 12\",\"pages\":\"240107\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240107\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thermal measurements support a role of the ABA/LANCL1-2 hormone/receptors system in thermogenesis.
Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.