合理设计产生具有改变序列特异性的rna结合锌指结构域。

IF 5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RNA Pub Date : 2025-01-22 DOI:10.1261/rna.080329.124
Qishan Liang, Joy S Xiang, Gene W Yeo, Kevin D Corbett
{"title":"合理设计产生具有改变序列特异性的rna结合锌指结构域。","authors":"Qishan Liang, Joy S Xiang, Gene W Yeo, Kevin D Corbett","doi":"10.1261/rna.080329.124","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting and manipulating endogenous RNAs in a sequence-specific manner is essential for both understanding RNA biology and developing RNA-targeting therapeutics. RNA-binding zinc fingers (ZnFs) are excellent candidates as designer proteins to expand the RNA-targeting toolbox, due to their compact size and modular sequence recognition. Currently, little is known about how the sequence of RNA-binding ZnF domains governs their binding site specificity. Here, we systematically introduced mutations at the RNA-contacting residues of a well-characterized RNA-binding ZnF protein, ZRANB2, and measured RNA binding of mutant ZnFs using a modified RNA bind-n-seq assay. We identified mutant ZnFs with an altered sequence specificity, preferring to bind a GGG motif instead of the GGU preferred by wild-type ZRANB2. Further, through a series of all-atom molecular dynamics simulations with ZRANB2 and RNA, we characterized changes in the hydrogen-bond network between the protein and RNA that underlie the observed sequence specificity changes. Our analysis of ZRANB2-RNA interactions both in vitro and in silico expands the understanding of ZnF-RNA recognition rules and serves as a foundation for eventual use of RNA-binding ZnFs for programmable RNA targeting.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"150-163"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rational design yields RNA-binding zinc finger domains with altered sequence specificity.\",\"authors\":\"Qishan Liang, Joy S Xiang, Gene W Yeo, Kevin D Corbett\",\"doi\":\"10.1261/rna.080329.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting and manipulating endogenous RNAs in a sequence-specific manner is essential for both understanding RNA biology and developing RNA-targeting therapeutics. RNA-binding zinc fingers (ZnFs) are excellent candidates as designer proteins to expand the RNA-targeting toolbox, due to their compact size and modular sequence recognition. Currently, little is known about how the sequence of RNA-binding ZnF domains governs their binding site specificity. Here, we systematically introduced mutations at the RNA-contacting residues of a well-characterized RNA-binding ZnF protein, ZRANB2, and measured RNA binding of mutant ZnFs using a modified RNA bind-n-seq assay. We identified mutant ZnFs with an altered sequence specificity, preferring to bind a GGG motif instead of the GGU preferred by wild-type ZRANB2. Further, through a series of all-atom molecular dynamics simulations with ZRANB2 and RNA, we characterized changes in the hydrogen-bond network between the protein and RNA that underlie the observed sequence specificity changes. Our analysis of ZRANB2-RNA interactions both in vitro and in silico expands the understanding of ZnF-RNA recognition rules and serves as a foundation for eventual use of RNA-binding ZnFs for programmable RNA targeting.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"150-163\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080329.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080329.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以序列特异性的方式靶向和操纵内源性RNA对于理解RNA生物学和开发RNA靶向治疗是必不可少的。rna结合锌指(ZnFs)由于其紧凑的尺寸和模块化的序列识别,是扩展rna靶向工具箱的优秀候选设计蛋白。目前,关于rna结合ZnF结构域的序列是如何控制其结合位点特异性的,我们知之甚少。在这里,我们系统地引入了一种具有良好特征的RNA结合ZnF蛋白ZRANB2的RNA接触残基突变,并使用改进的RNA结合-n-seq (RBNS)测定突变ZnF的RNA结合。我们发现突变型ZnFs具有改变的序列特异性,更倾向于结合GGG基序而不是野生型ZRANB2首选的GGU基序。此外,通过一系列与ZRANB2和RNA的全原子分子动力学(MD)模拟,我们表征了蛋白质和RNA之间的氢键网络的变化,这些变化是观察到的序列特异性变化的基础。我们在体外和计算机上对ZRANB2-RNA相互作用的分析扩展了对ZnF-RNA识别规则的理解,并为最终使用RNA结合znf进行可编程RNA靶向奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational design yields RNA-binding zinc finger domains with altered sequence specificity.

Targeting and manipulating endogenous RNAs in a sequence-specific manner is essential for both understanding RNA biology and developing RNA-targeting therapeutics. RNA-binding zinc fingers (ZnFs) are excellent candidates as designer proteins to expand the RNA-targeting toolbox, due to their compact size and modular sequence recognition. Currently, little is known about how the sequence of RNA-binding ZnF domains governs their binding site specificity. Here, we systematically introduced mutations at the RNA-contacting residues of a well-characterized RNA-binding ZnF protein, ZRANB2, and measured RNA binding of mutant ZnFs using a modified RNA bind-n-seq assay. We identified mutant ZnFs with an altered sequence specificity, preferring to bind a GGG motif instead of the GGU preferred by wild-type ZRANB2. Further, through a series of all-atom molecular dynamics simulations with ZRANB2 and RNA, we characterized changes in the hydrogen-bond network between the protein and RNA that underlie the observed sequence specificity changes. Our analysis of ZRANB2-RNA interactions both in vitro and in silico expands the understanding of ZnF-RNA recognition rules and serves as a foundation for eventual use of RNA-binding ZnFs for programmable RNA targeting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
期刊最新文献
Tuning tRNA synthetase inhibition reveals parabolic induction of stress granules limited in size and RNA content. Regulation of mRNA decay and translation during the mammalian cell cycle. The PIN domain of SMG-5 functionally interacts with SMG-6 to stimulate NMD. A comparison of Dictyostelium discoideum 3'-5' RNA polymerases reveals a conserved tRNAHis guanylyltransferase residue that plays a dual role in catalysis. The repertoire of binding specificities for two repeats in the RNA-binding domain of Drosophila Pumilio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1