一个可编程的开源机器人,它可以抓伤培养的组织,以研究细胞迁移、愈合和组织雕刻。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-12-16 Epub Date: 2024-12-09 DOI:10.1016/j.crmeth.2024.100915
Yubin Lin, Alexander Silverman-Dultz, Madeline Bailey, Daniel J Cohen
{"title":"一个可编程的开源机器人,它可以抓伤培养的组织,以研究细胞迁移、愈合和组织雕刻。","authors":"Yubin Lin, Alexander Silverman-Dultz, Madeline Bailey, Daniel J Cohen","doi":"10.1016/j.crmeth.2024.100915","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the widespread popularity of the \"scratch assay,\" where a pipette is dragged manually through cultured tissue to create a gap to study cell migration and healing, it carries significant drawbacks. Its heavy reliance on manual technique can complicate quantification, reduce throughput, and limit the versatility and reproducibility. We present an open-source, low-cost, accessible, robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood without specialized training, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, the robot demonstrates precise removal of tissues for sculpting arbitrary tissue and wound shapes, enabling complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay and opens up new possibilities in complex tissue engineering for realistic wound healing and migration research.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100915"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704611/pdf/","citationCount":"0","resultStr":"{\"title\":\"A programmable, open-source robot that scratches cultured tissues to investigate cell migration, healing, and tissue sculpting.\",\"authors\":\"Yubin Lin, Alexander Silverman-Dultz, Madeline Bailey, Daniel J Cohen\",\"doi\":\"10.1016/j.crmeth.2024.100915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the widespread popularity of the \\\"scratch assay,\\\" where a pipette is dragged manually through cultured tissue to create a gap to study cell migration and healing, it carries significant drawbacks. Its heavy reliance on manual technique can complicate quantification, reduce throughput, and limit the versatility and reproducibility. We present an open-source, low-cost, accessible, robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood without specialized training, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, the robot demonstrates precise removal of tissues for sculpting arbitrary tissue and wound shapes, enabling complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay and opens up new possibilities in complex tissue engineering for realistic wound healing and migration research.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"100915\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

尽管“划痕试验”广受欢迎,但它有明显的缺点。“划痕试验”是一种手动拖动移液管穿过培养组织以产生间隙以研究细胞迁移和愈合的方法。它严重依赖于手工技术,使定量复杂化,降低了吞吐量,限制了通用性和可重复性。我们提出了一个开源、低成本、可访问的机器人抓挠平台,解决了所有的核心问题。与几乎所有标准细胞培养皿兼容,无需专门培训即可直接在无菌培养罩中使用,我们的机器人在各种复杂培养组织中以高通量进行高重复性划痕。此外,机器人展示了精确的组织去除雕刻任意组织和伤口形状,使复杂的共培养实验。该系统显著提高了传统划痕试验的有效性,并为复杂组织工程中真实伤口愈合和迁移研究开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A programmable, open-source robot that scratches cultured tissues to investigate cell migration, healing, and tissue sculpting.

Despite the widespread popularity of the "scratch assay," where a pipette is dragged manually through cultured tissue to create a gap to study cell migration and healing, it carries significant drawbacks. Its heavy reliance on manual technique can complicate quantification, reduce throughput, and limit the versatility and reproducibility. We present an open-source, low-cost, accessible, robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood without specialized training, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, the robot demonstrates precise removal of tissues for sculpting arbitrary tissue and wound shapes, enabling complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay and opens up new possibilities in complex tissue engineering for realistic wound healing and migration research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
A real-time, multi-subject three-dimensional pose tracking system for the behavioral analysis of non-human primates. Non-invasive real-time pulsed Doppler assessment of blood flow in mouse ophthalmic artery. Comparative prospects of imaging methods for whole-brain mammalian connectomics. A probabilistic modeling framework for genomic networks incorporating sample heterogeneity. Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1