层次深度文档模型

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-10-29 DOI:10.1109/TKDE.2024.3487523
Yi Yang;John P. Lalor;Ahmed Abbasi;Daniel Dajun Zeng
{"title":"层次深度文档模型","authors":"Yi Yang;John P. Lalor;Ahmed Abbasi;Daniel Dajun Zeng","doi":"10.1109/TKDE.2024.3487523","DOIUrl":null,"url":null,"abstract":"Topic modeling is a commonly used text analysis tool for discovering latent topics in a text corpus. However, while topics in a text corpus often exhibit a hierarchical structure (e.g., cellphone is a sub-topic of electronics), most topic modeling methods assume a flat topic structure that ignores the hierarchical dependency among topics, or utilize a predefined topic hierarchy. In this work, we present a novel Hierarchical Deep Document Model (HDDM) to learn topic hierarchies using a variational autoencoder framework. We propose a novel objective function, sum of log likelihood, instead of the widely used evidence lower bound, to facilitate the learning of hierarchical latent topic structure. The proposed objective function can directly model and optimize the hierarchical topic-word distributions at all topic levels. We conduct experiments on four real-world text datasets to evaluate the topic modeling capability of the proposed HDDM method compared to state-of-the-art hierarchical topic modeling benchmarks. Experimental results show that HDDM achieves considerable improvement over benchmarks and is capable of learning meaningful topics and topic hierarchies. To further demonstrate the practical utility of HDDM, we apply it to a real-world medical notes dataset for clinical prediction. Experimental results show that HDDM can better summarize topics in medical notes, resulting in more accurate clinical predictions.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"351-364"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Deep Document Model\",\"authors\":\"Yi Yang;John P. Lalor;Ahmed Abbasi;Daniel Dajun Zeng\",\"doi\":\"10.1109/TKDE.2024.3487523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topic modeling is a commonly used text analysis tool for discovering latent topics in a text corpus. However, while topics in a text corpus often exhibit a hierarchical structure (e.g., cellphone is a sub-topic of electronics), most topic modeling methods assume a flat topic structure that ignores the hierarchical dependency among topics, or utilize a predefined topic hierarchy. In this work, we present a novel Hierarchical Deep Document Model (HDDM) to learn topic hierarchies using a variational autoencoder framework. We propose a novel objective function, sum of log likelihood, instead of the widely used evidence lower bound, to facilitate the learning of hierarchical latent topic structure. The proposed objective function can directly model and optimize the hierarchical topic-word distributions at all topic levels. We conduct experiments on four real-world text datasets to evaluate the topic modeling capability of the proposed HDDM method compared to state-of-the-art hierarchical topic modeling benchmarks. Experimental results show that HDDM achieves considerable improvement over benchmarks and is capable of learning meaningful topics and topic hierarchies. To further demonstrate the practical utility of HDDM, we apply it to a real-world medical notes dataset for clinical prediction. Experimental results show that HDDM can better summarize topics in medical notes, resulting in more accurate clinical predictions.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 1\",\"pages\":\"351-364\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737364/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737364/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

主题建模是一种常用的文本分析工具,用于发现文本语料库中的潜在主题。然而,虽然文本语料库中的主题通常表现出层次结构(例如,手机是电子产品的子主题),但大多数主题建模方法都假设一个扁平的主题结构,忽略了主题之间的层次依赖关系,或者利用预定义的主题层次结构。在这项工作中,我们提出了一种新的分层深度文档模型(HDDM),使用变分自编码器框架来学习主题层次结构。我们提出了一个新的目标函数,即对数似然和,以取代广泛使用的证据下界,以促进分层潜在主题结构的学习。所提出的目标函数可以直接对各个主题层次的分层主题词分布进行建模和优化。我们在四个真实文本数据集上进行了实验,以评估所提出的HDDM方法与最先进的分层主题建模基准的主题建模能力。实验结果表明,HDDM在基准测试的基础上取得了相当大的进步,能够学习有意义的主题和主题层次。为了进一步证明HDDM的实际效用,我们将其应用于现实世界的医疗笔记数据集进行临床预测。实验结果表明,HDDM可以更好地总结医疗笔记中的主题,从而获得更准确的临床预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Deep Document Model
Topic modeling is a commonly used text analysis tool for discovering latent topics in a text corpus. However, while topics in a text corpus often exhibit a hierarchical structure (e.g., cellphone is a sub-topic of electronics), most topic modeling methods assume a flat topic structure that ignores the hierarchical dependency among topics, or utilize a predefined topic hierarchy. In this work, we present a novel Hierarchical Deep Document Model (HDDM) to learn topic hierarchies using a variational autoencoder framework. We propose a novel objective function, sum of log likelihood, instead of the widely used evidence lower bound, to facilitate the learning of hierarchical latent topic structure. The proposed objective function can directly model and optimize the hierarchical topic-word distributions at all topic levels. We conduct experiments on four real-world text datasets to evaluate the topic modeling capability of the proposed HDDM method compared to state-of-the-art hierarchical topic modeling benchmarks. Experimental results show that HDDM achieves considerable improvement over benchmarks and is capable of learning meaningful topics and topic hierarchies. To further demonstrate the practical utility of HDDM, we apply it to a real-world medical notes dataset for clinical prediction. Experimental results show that HDDM can better summarize topics in medical notes, resulting in more accurate clinical predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1