短期时间序列预测的多模式记忆模型

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-11-04 DOI:10.1109/TKDE.2024.3490843
Dezheng Wang;Rongjie Liu;Congyan Chen;Shihua Li
{"title":"短期时间序列预测的多模式记忆模型","authors":"Dezheng Wang;Rongjie Liu;Congyan Chen;Shihua Li","doi":"10.1109/TKDE.2024.3490843","DOIUrl":null,"url":null,"abstract":"Short-term time series forecasting is pivotal in various scientific and industrial fields. Recent advancements in deep learning-based technologies have significantly improved the efficiency and accuracy of short-term time series modeling. Despite advancements, current time short-term series forecasting methods typically emphasize modeling dependencies across time stamps but frequently overlook inter-variable dependencies, which is crucial for multivariate forecasting. We propose a multi patterns memory model discovering various dependency patterns for short-term multivariate time series forecasting to fill the gap. The proposed model is structured around two key components: the short-term memory block and the long-term memory block. These networks are distinctively characterized by their use of asymmetric convolution, each tailored to process the various spatial-temporal dependencies among data. Experimental results show that the proposed model demonstrates competitive performance over the other time series forecasting methods across five benchmark datasets, likely thanks to the asymmetric structure, which can effectively extract the underlying various spatial-temporal dependencies among data.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"438-448"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MPM: Multi Patterns Memory Model for Short-Term Time Series Forecasting\",\"authors\":\"Dezheng Wang;Rongjie Liu;Congyan Chen;Shihua Li\",\"doi\":\"10.1109/TKDE.2024.3490843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term time series forecasting is pivotal in various scientific and industrial fields. Recent advancements in deep learning-based technologies have significantly improved the efficiency and accuracy of short-term time series modeling. Despite advancements, current time short-term series forecasting methods typically emphasize modeling dependencies across time stamps but frequently overlook inter-variable dependencies, which is crucial for multivariate forecasting. We propose a multi patterns memory model discovering various dependency patterns for short-term multivariate time series forecasting to fill the gap. The proposed model is structured around two key components: the short-term memory block and the long-term memory block. These networks are distinctively characterized by their use of asymmetric convolution, each tailored to process the various spatial-temporal dependencies among data. Experimental results show that the proposed model demonstrates competitive performance over the other time series forecasting methods across five benchmark datasets, likely thanks to the asymmetric structure, which can effectively extract the underlying various spatial-temporal dependencies among data.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 1\",\"pages\":\"438-448\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742485/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742485/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

短期时间序列预测在许多科学和工业领域都是至关重要的。基于深度学习技术的最新进展显著提高了短期时间序列建模的效率和准确性。尽管取得了进步,但目前的时间短期序列预测方法通常强调跨时间戳的建模依赖关系,但经常忽略变量间的依赖关系,这对多变量预测至关重要。我们提出了一种多模式记忆模型来发现短期多元时间序列预测的各种依赖模式,以填补这一空白。提出的模型是围绕两个关键组成部分:短期记忆块和长期记忆块。这些网络的特点是使用非对称卷积,每个网络都专门处理数据之间的各种时空依赖关系。实验结果表明,该模型在5个基准数据集上的表现优于其他时间序列预测方法,这可能要归功于该模型的非对称结构,它可以有效地提取数据之间潜在的各种时空依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPM: Multi Patterns Memory Model for Short-Term Time Series Forecasting
Short-term time series forecasting is pivotal in various scientific and industrial fields. Recent advancements in deep learning-based technologies have significantly improved the efficiency and accuracy of short-term time series modeling. Despite advancements, current time short-term series forecasting methods typically emphasize modeling dependencies across time stamps but frequently overlook inter-variable dependencies, which is crucial for multivariate forecasting. We propose a multi patterns memory model discovering various dependency patterns for short-term multivariate time series forecasting to fill the gap. The proposed model is structured around two key components: the short-term memory block and the long-term memory block. These networks are distinctively characterized by their use of asymmetric convolution, each tailored to process the various spatial-temporal dependencies among data. Experimental results show that the proposed model demonstrates competitive performance over the other time series forecasting methods across five benchmark datasets, likely thanks to the asymmetric structure, which can effectively extract the underlying various spatial-temporal dependencies among data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1