利用机器学习和时间序列分析对老年人漫游模式进行分类

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Latin America Transactions Pub Date : 2024-12-11 DOI:10.1109/TLA.2024.10789632
Daniel Ramos-Rivera;Arnoldo Díaz-Ramírez;Leonardo Trujillo;Juan Pablo García-Vázquez;Pedro Mejía-Álvarez
{"title":"利用机器学习和时间序列分析对老年人漫游模式进行分类","authors":"Daniel Ramos-Rivera;Arnoldo Díaz-Ramírez;Leonardo Trujillo;Juan Pablo García-Vázquez;Pedro Mejía-Álvarez","doi":"10.1109/TLA.2024.10789632","DOIUrl":null,"url":null,"abstract":"Dementia has emerged as a significant health concern due to global aging trends. A degenerative brain disorder, dementia leads to cognitive decline, memory loss, impaired communication skills, reduced abilities, and shifts in personality and mood. Dementia lacks a definitive cure, but accurate diagnosis and treatment can improve the quality of life for those affected. Wandering behavior is common in patients, and a link between wandering patterns and the severity of the disease has been established. This work addresses the challenge of detecting dementia-related wandering behaviors. The proposed strategy utilizes data imputation methods and feature extraction with the Discrete Wavelet Transformation applied to a recently developed and comprehensive dataset. Machine learning algorithms are used to perform the final detection, and hyperparameter optimization is also evaluated.Experiments show that performance achieves an accuracy of approximately 98% using the Random Forest classifier. Results are competitive with the state-of-the-art in time series classification, with improved efficiency. The proposed methodology can be used for the development of applications for dementia related research and care.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"22 12","pages":"1009-1018"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10789632","citationCount":"0","resultStr":"{\"title\":\"Classification of wandering patterns in the elderly using machine learning and time series analysis\",\"authors\":\"Daniel Ramos-Rivera;Arnoldo Díaz-Ramírez;Leonardo Trujillo;Juan Pablo García-Vázquez;Pedro Mejía-Álvarez\",\"doi\":\"10.1109/TLA.2024.10789632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dementia has emerged as a significant health concern due to global aging trends. A degenerative brain disorder, dementia leads to cognitive decline, memory loss, impaired communication skills, reduced abilities, and shifts in personality and mood. Dementia lacks a definitive cure, but accurate diagnosis and treatment can improve the quality of life for those affected. Wandering behavior is common in patients, and a link between wandering patterns and the severity of the disease has been established. This work addresses the challenge of detecting dementia-related wandering behaviors. The proposed strategy utilizes data imputation methods and feature extraction with the Discrete Wavelet Transformation applied to a recently developed and comprehensive dataset. Machine learning algorithms are used to perform the final detection, and hyperparameter optimization is also evaluated.Experiments show that performance achieves an accuracy of approximately 98% using the Random Forest classifier. Results are competitive with the state-of-the-art in time series classification, with improved efficiency. The proposed methodology can be used for the development of applications for dementia related research and care.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":\"22 12\",\"pages\":\"1009-1018\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10789632\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10789632/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10789632/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于全球老龄化趋势,痴呆症已成为一个重大的健康问题。痴呆症是一种大脑退行性疾病,会导致认知能力下降、记忆力丧失、沟通能力受损、能力下降、性格和情绪变化。痴呆症缺乏明确的治疗方法,但准确的诊断和治疗可以改善患者的生活质量。徘徊行为在患者中很常见,徘徊模式与疾病严重程度之间的联系已经确立。这项工作解决了检测痴呆症相关漫游行为的挑战。该方法采用数据输入方法和特征提取方法,并将离散小波变换应用于最新开发的综合数据集。使用机器学习算法进行最终检测,并对超参数优化进行了评估。实验表明,使用随机森林分类器可以达到约98%的准确率。结果与最先进的时间序列分类具有竞争力,提高了效率。所提出的方法可用于开发痴呆症相关研究和护理的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of wandering patterns in the elderly using machine learning and time series analysis
Dementia has emerged as a significant health concern due to global aging trends. A degenerative brain disorder, dementia leads to cognitive decline, memory loss, impaired communication skills, reduced abilities, and shifts in personality and mood. Dementia lacks a definitive cure, but accurate diagnosis and treatment can improve the quality of life for those affected. Wandering behavior is common in patients, and a link between wandering patterns and the severity of the disease has been established. This work addresses the challenge of detecting dementia-related wandering behaviors. The proposed strategy utilizes data imputation methods and feature extraction with the Discrete Wavelet Transformation applied to a recently developed and comprehensive dataset. Machine learning algorithms are used to perform the final detection, and hyperparameter optimization is also evaluated.Experiments show that performance achieves an accuracy of approximately 98% using the Random Forest classifier. Results are competitive with the state-of-the-art in time series classification, with improved efficiency. The proposed methodology can be used for the development of applications for dementia related research and care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
期刊最新文献
Design and Validation of an IoT System for an Experimental Laboratory Microgrid Personalized Digital Instructor Based on Arduino for Buerger Exercises in Older Adults with Diabetes: Feasibility Study STAR-IRS Assisted Rate Splitting Multiple Access with Perfect and Imperfect CSI for 6G Communication Through the Youth Eyes: Training Depression Detection Algorithms with Eye Tracking Data Editorial 2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1