基于CNN-Transformer协作的半监督组织病理学图像语义分割的多尺度一致性监督

Min-En Hsieh;Chien-Yu Chiou;Hung-Wen Tsai;Yu-Cheng Chang;Pau-Choo Chung
{"title":"基于CNN-Transformer协作的半监督组织病理学图像语义分割的多尺度一致性监督","authors":"Min-En Hsieh;Chien-Yu Chiou;Hung-Wen Tsai;Yu-Cheng Chang;Pau-Choo Chung","doi":"10.1109/TAI.2024.3443794","DOIUrl":null,"url":null,"abstract":"This study proposes a multiscale consistency supervision (MSCS) strategy that combines a semisupervised learning approach with multimagnification learning to ease the labeling load and improve the prediction accuracy of histopathology image semantic segmentation. The MSCS strategy incorporates multiview complementary information into the semisupervised learning process, where this information includes that obtained from multiscale views (i.e., cells and tissues) and encoders with different decision perspectives. The strategy is implemented through the collaboration between convolutional neural network (CNN) and Transformer encoders, where the former encoder excels at capturing local spatial relationships in the input images and the latter encoder excels at capturing global relationships. In the proposed approach, the learning process is performed using two asymmetric multiscale fusion networks, designated as MSUnetFusion and MSUSegFormer. MSUnetFusion learns the cell-level features using CNN and the tissue-level features using Transformer. In contrast, MSUSegFormer learns both features using only Transformer. MSCS enforces prediction consistency between the two networks to enhance the prediction performance for unlabeled training data. The experimental results show that MSCS outperforms both supervised and semisupervised methods for the segmentation of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) datasets, even when only limited labeled data are available. Overall, MSCS appears to provide a promising solution for histopathology image semantic segmentation.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6356-6368"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSCS: Multiscale Consistency Supervision With CNN-Transformer Collaboration for Semisupervised Histopathology Image Semantic Segmentation\",\"authors\":\"Min-En Hsieh;Chien-Yu Chiou;Hung-Wen Tsai;Yu-Cheng Chang;Pau-Choo Chung\",\"doi\":\"10.1109/TAI.2024.3443794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a multiscale consistency supervision (MSCS) strategy that combines a semisupervised learning approach with multimagnification learning to ease the labeling load and improve the prediction accuracy of histopathology image semantic segmentation. The MSCS strategy incorporates multiview complementary information into the semisupervised learning process, where this information includes that obtained from multiscale views (i.e., cells and tissues) and encoders with different decision perspectives. The strategy is implemented through the collaboration between convolutional neural network (CNN) and Transformer encoders, where the former encoder excels at capturing local spatial relationships in the input images and the latter encoder excels at capturing global relationships. In the proposed approach, the learning process is performed using two asymmetric multiscale fusion networks, designated as MSUnetFusion and MSUSegFormer. MSUnetFusion learns the cell-level features using CNN and the tissue-level features using Transformer. In contrast, MSUSegFormer learns both features using only Transformer. MSCS enforces prediction consistency between the two networks to enhance the prediction performance for unlabeled training data. The experimental results show that MSCS outperforms both supervised and semisupervised methods for the segmentation of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) datasets, even when only limited labeled data are available. Overall, MSCS appears to provide a promising solution for histopathology image semantic segmentation.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 12\",\"pages\":\"6356-6368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637254/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637254/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种多尺度一致性监督(MSCS)策略,该策略将半监督学习方法与多放大学习相结合,以减轻组织病理学图像语义分割的标记负担并提高预测精度。MSCS策略将多视角互补信息整合到半监督学习过程中,其中这些信息包括从多尺度视图(即细胞和组织)和具有不同决策视角的编码器获得的信息。该策略通过卷积神经网络(CNN)和Transformer编码器之间的协作来实现,前者编码器擅长捕获输入图像中的局部空间关系,后者编码器擅长捕获全局关系。在该方法中,学习过程使用两个非对称多尺度融合网络,分别称为MSUnetFusion和MSUSegFormer。MSUnetFusion使用CNN学习细胞级特征,使用Transformer学习组织级特征。相比之下,MSUSegFormer只使用Transformer学习这两个特性。MSCS加强了两个网络之间的预测一致性,以提高对未标记训练数据的预测性能。实验结果表明,MSCS在肝细胞癌(HCC)和结直肠癌(CRC)数据集分割方面优于监督和半监督方法,即使只有有限的标记数据可用。总的来说,MSCS似乎为组织病理学图像语义分割提供了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSCS: Multiscale Consistency Supervision With CNN-Transformer Collaboration for Semisupervised Histopathology Image Semantic Segmentation
This study proposes a multiscale consistency supervision (MSCS) strategy that combines a semisupervised learning approach with multimagnification learning to ease the labeling load and improve the prediction accuracy of histopathology image semantic segmentation. The MSCS strategy incorporates multiview complementary information into the semisupervised learning process, where this information includes that obtained from multiscale views (i.e., cells and tissues) and encoders with different decision perspectives. The strategy is implemented through the collaboration between convolutional neural network (CNN) and Transformer encoders, where the former encoder excels at capturing local spatial relationships in the input images and the latter encoder excels at capturing global relationships. In the proposed approach, the learning process is performed using two asymmetric multiscale fusion networks, designated as MSUnetFusion and MSUSegFormer. MSUnetFusion learns the cell-level features using CNN and the tissue-level features using Transformer. In contrast, MSUSegFormer learns both features using only Transformer. MSCS enforces prediction consistency between the two networks to enhance the prediction performance for unlabeled training data. The experimental results show that MSCS outperforms both supervised and semisupervised methods for the segmentation of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) datasets, even when only limited labeled data are available. Overall, MSCS appears to provide a promising solution for histopathology image semantic segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1