基于FPGA的决策树ACL引擎异构自适应架构

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-10-10 DOI:10.1109/TC.2024.3477955
Yao Xin;Chengjun Jia;Wenjun Li;Ori Rottenstreich;Yang Xu;Gaogang Xie;Zhihong Tian;Jun Li
{"title":"基于FPGA的决策树ACL引擎异构自适应架构","authors":"Yao Xin;Chengjun Jia;Wenjun Li;Ori Rottenstreich;Yang Xu;Gaogang Xie;Zhihong Tian;Jun Li","doi":"10.1109/TC.2024.3477955","DOIUrl":null,"url":null,"abstract":"Access Control Lists (ACLs) are crucial for ensuring the security and integrity of modern cloud and carrier networks by regulating access to sensitive information and resources. However, previous software and hardware implementations no longer meet the requirements of modern datacenters. The emergence of FPGA-based SmartNICs presents an opportunity to offload ACL functions from the host CPU, leading to improved network performance in datacenter applications. However, previous FPGA-based ACL designs lacked the necessary flexibility to support different rulesets without hardware reconfiguration while maintaining high performance. In this paper, we propose HACL, a heterogeneous and adaptive architecture for decision-tree-based ACL engine on FPGA. By employing techniques such as tree decomposition and recirculated pipeline scheduling, HACL can accommodate various rulesets without reconfiguring the underlying architecture. To facilitate the efficient mapping of different decision trees to memory and optimize the throughput of a ruleset, we also introduce a heterogeneous framework with a compiler in CPU platform for HACL. We implement HACL on a typical SmartNIC and evaluate its performance. The results demonstrate that HACL achieves a throughput exceeding 260 Mpps when processing 100K-scale ACL rulesets, with low hardware resource utilization. By integrating more engines, HACL can achieve even higher throughput and support larger rulesets.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"263-277"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Heterogeneous and Adaptive Architecture for Decision-Tree-Based ACL Engine on FPGA\",\"authors\":\"Yao Xin;Chengjun Jia;Wenjun Li;Ori Rottenstreich;Yang Xu;Gaogang Xie;Zhihong Tian;Jun Li\",\"doi\":\"10.1109/TC.2024.3477955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access Control Lists (ACLs) are crucial for ensuring the security and integrity of modern cloud and carrier networks by regulating access to sensitive information and resources. However, previous software and hardware implementations no longer meet the requirements of modern datacenters. The emergence of FPGA-based SmartNICs presents an opportunity to offload ACL functions from the host CPU, leading to improved network performance in datacenter applications. However, previous FPGA-based ACL designs lacked the necessary flexibility to support different rulesets without hardware reconfiguration while maintaining high performance. In this paper, we propose HACL, a heterogeneous and adaptive architecture for decision-tree-based ACL engine on FPGA. By employing techniques such as tree decomposition and recirculated pipeline scheduling, HACL can accommodate various rulesets without reconfiguring the underlying architecture. To facilitate the efficient mapping of different decision trees to memory and optimize the throughput of a ruleset, we also introduce a heterogeneous framework with a compiler in CPU platform for HACL. We implement HACL on a typical SmartNIC and evaluate its performance. The results demonstrate that HACL achieves a throughput exceeding 260 Mpps when processing 100K-scale ACL rulesets, with low hardware resource utilization. By integrating more engines, HACL can achieve even higher throughput and support larger rulesets.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 1\",\"pages\":\"263-277\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713228/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713228/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

访问控制列表(acl)通过规范对敏感信息和资源的访问,对于确保现代云和运营商网络的安全性和完整性至关重要。但是,以前的软件和硬件实现已经不能满足现代数据中心的需求。基于fpga的smartnic的出现为从主机CPU中卸载ACL功能提供了机会,从而提高了数据中心应用程序的网络性能。然而,以前基于fpga的ACL设计缺乏必要的灵活性,无法在不重新配置硬件的情况下支持不同的规则集,同时保持高性能。本文提出了一种基于FPGA的决策树ACL引擎的异构自适应结构。通过采用树分解和循环管道调度等技术,HACL可以适应各种规则集,而无需重新配置底层体系结构。为了促进不同决策树到内存的有效映射和优化规则集的吞吐量,我们还在CPU平台上引入了一个带有编译器的异构框架。我们在一个典型的SmartNIC上实现了HACL,并对其性能进行了评估。结果表明,在处理100k级ACL规则集时,ACL的吞吐量超过260 Mpps,硬件资源利用率较低。通过集成更多的引擎,HACL可以实现更高的吞吐量并支持更大的规则集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Heterogeneous and Adaptive Architecture for Decision-Tree-Based ACL Engine on FPGA
Access Control Lists (ACLs) are crucial for ensuring the security and integrity of modern cloud and carrier networks by regulating access to sensitive information and resources. However, previous software and hardware implementations no longer meet the requirements of modern datacenters. The emergence of FPGA-based SmartNICs presents an opportunity to offload ACL functions from the host CPU, leading to improved network performance in datacenter applications. However, previous FPGA-based ACL designs lacked the necessary flexibility to support different rulesets without hardware reconfiguration while maintaining high performance. In this paper, we propose HACL, a heterogeneous and adaptive architecture for decision-tree-based ACL engine on FPGA. By employing techniques such as tree decomposition and recirculated pipeline scheduling, HACL can accommodate various rulesets without reconfiguring the underlying architecture. To facilitate the efficient mapping of different decision trees to memory and optimize the throughput of a ruleset, we also introduce a heterogeneous framework with a compiler in CPU platform for HACL. We implement HACL on a typical SmartNIC and evaluate its performance. The results demonstrate that HACL achieves a throughput exceeding 260 Mpps when processing 100K-scale ACL rulesets, with low hardware resource utilization. By integrating more engines, HACL can achieve even higher throughput and support larger rulesets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
2024 Reviewers List Shared Recurrence Floating-Point Divide/Sqrt and Integer Divide/Remainder With Early Termination A System-Level Test Methodology for Communication Peripherals in System-on-Chips Stream: Design Space Exploration of Layer-Fused DNNs on Heterogeneous Dataflow Accelerators Balancing Privacy and Accuracy Using Significant Gradient Protection in Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1