第二定律与刘氏关系:不可逆方向公理

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-10-23 DOI:10.1007/s11012-024-01877-0
W. Muschik
{"title":"第二定律与刘氏关系:不可逆方向公理","authors":"W. Muschik","doi":"10.1007/s11012-024-01877-0","DOIUrl":null,"url":null,"abstract":"<div><p>A thermodynamic process is governed by balance equations in field-formulated thermodynamics. Especially the balance equation of entropy takes a prominent role: it introduces the Second Law in the form of a dissipation inequality via the non-negative entropy production. Balance equations and dissipation inequality are independent of the considered material which is described by additional constitutive equations which need the introduction of a state space which is spanned by the state space variables. Inserting these constitutive equations into the balance equations results in the balance equations on state space which include the first order time and position derivatives of the state space variables, called “higher derivatives” wich are directional derivatives in a mathematicle sense. Why do not appear the latter in the Liu Relations which pretend to describe material as well as the equations on state space do ? The answer is that the Liu Relations describe materials whose entropy production does not depend on the higher derivatives. Consequently, the Liu Relations are more specific than the balance equations on state space. A toy example concerning heat conduction in compressible fluids is in two different versions added for elucidation.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 10","pages":"1643 - 1654"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01877-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Second law and Liu relations: the no-reversible-direction axiom—revisited\",\"authors\":\"W. Muschik\",\"doi\":\"10.1007/s11012-024-01877-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A thermodynamic process is governed by balance equations in field-formulated thermodynamics. Especially the balance equation of entropy takes a prominent role: it introduces the Second Law in the form of a dissipation inequality via the non-negative entropy production. Balance equations and dissipation inequality are independent of the considered material which is described by additional constitutive equations which need the introduction of a state space which is spanned by the state space variables. Inserting these constitutive equations into the balance equations results in the balance equations on state space which include the first order time and position derivatives of the state space variables, called “higher derivatives” wich are directional derivatives in a mathematicle sense. Why do not appear the latter in the Liu Relations which pretend to describe material as well as the equations on state space do ? The answer is that the Liu Relations describe materials whose entropy production does not depend on the higher derivatives. Consequently, the Liu Relations are more specific than the balance equations on state space. A toy example concerning heat conduction in compressible fluids is in two different versions added for elucidation.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 10\",\"pages\":\"1643 - 1654\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-024-01877-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01877-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01877-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在场公式热力学中,热力学过程是由平衡方程控制的。尤其是熵的平衡方程,它通过非负熵产生以耗散不等式的形式引入了第二定律。平衡方程和耗散不等式与考虑的材料无关,这些材料由附加的本构方程描述,需要引入由状态空间变量张成的状态空间。将这些本构方程代入平衡方程得到状态空间上的平衡方程,该平衡方程包含状态空间变量的一阶时间和位置导数,称为“高导数”,在数学意义上是方向导数。为什么后者不出现在刘氏关系式中,它假装描述物质,就像描述状态空间方程一样?答案是,刘氏关系描述了其熵产不依赖于高阶导数的材料。因此,刘氏关系比状态空间上的平衡方程更具体。一个关于可压缩流体中热传导的小例子,在两个不同的版本中添加以作说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Second law and Liu relations: the no-reversible-direction axiom—revisited

A thermodynamic process is governed by balance equations in field-formulated thermodynamics. Especially the balance equation of entropy takes a prominent role: it introduces the Second Law in the form of a dissipation inequality via the non-negative entropy production. Balance equations and dissipation inequality are independent of the considered material which is described by additional constitutive equations which need the introduction of a state space which is spanned by the state space variables. Inserting these constitutive equations into the balance equations results in the balance equations on state space which include the first order time and position derivatives of the state space variables, called “higher derivatives” wich are directional derivatives in a mathematicle sense. Why do not appear the latter in the Liu Relations which pretend to describe material as well as the equations on state space do ? The answer is that the Liu Relations describe materials whose entropy production does not depend on the higher derivatives. Consequently, the Liu Relations are more specific than the balance equations on state space. A toy example concerning heat conduction in compressible fluids is in two different versions added for elucidation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Dynamics analysis of the round-wheel compound bow model Multi-state meshing characteristics and global nonlinear dynamics of a spur gear system considering local tooth breakage Dynamic mechanical behavior of ice with different cotton contents On the effect of vertical motion of roll system upon dynamic behavior and stability of rolling mill A simple method for solving damped Duffing oscillators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1