牡蛎钙化液中微生物群落的分类多样性及其功能潜力。

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-31 Epub Date: 2024-12-12 DOI:10.1128/aem.01094-24
Andrea Unzueta-Martínez, Peter R Girguis
{"title":"牡蛎钙化液中微生物群落的分类多样性及其功能潜力。","authors":"Andrea Unzueta-Martínez, Peter R Girguis","doi":"10.1128/aem.01094-24","DOIUrl":null,"url":null,"abstract":"<p><p>Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid. We used shotgun metagenomics to survey calcifying fluid microbial communities from three different oyster harvesting sites. There was a striking consistency in taxonomic composition across the three collection sites. We also observed archaea and viruses that had not been previously identified in oyster calcifying fluid. Furthermore, we identified microbial energy-conserving metabolisms that could influence the host's calcification, including genes involved in sulfate reduction and denitrification that are thought to play pivotal roles in inorganic carbon chemistry and calcification in microbial biofilms. These findings provide new insights into the taxonomy and functional capacity of oyster calcifying fluid microbiomes, highlighting their potential contributions to shell biomineralization, and contribute to a deeper understanding of the interplay between microbial ecology and biogeochemistry that could potentially bolster oyster calcification.</p><p><strong>Importance: </strong>Previous research has underscored the influence of microbial metabolisms in carbonate deposition throughout the geological record. Despite the ecological importance of microbes to animals and inorganic carbon transformations, there have been limited studies characterizing the potential role of microbiomes in calcification by animals such as bivalves. Here, we use metagenomics to investigate the taxonomic diversity and functional potential of microbial communities in calcifying fluids from oysters collected at three different locations. We show a diverse microbial community that includes bacteria, archaea, and viruses, and we discuss their functional potential to influence calcifying fluid chemistry via reactions like sulfate reduction and denitrification. We also report the presence of carbonic anhydrase and urease, both of which are critical in microbial biofilm calcification. Our findings have broader implications in understanding what regulates calcifying fluid chemistry and consequentially the resilience of calcifying organisms to 21st century acidifying oceans.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0109424"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784444/pdf/","citationCount":"0","resultStr":"{\"title\":\"Taxonomic diversity and functional potential of microbial communities in oyster calcifying fluid.\",\"authors\":\"Andrea Unzueta-Martínez, Peter R Girguis\",\"doi\":\"10.1128/aem.01094-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid. We used shotgun metagenomics to survey calcifying fluid microbial communities from three different oyster harvesting sites. There was a striking consistency in taxonomic composition across the three collection sites. We also observed archaea and viruses that had not been previously identified in oyster calcifying fluid. Furthermore, we identified microbial energy-conserving metabolisms that could influence the host's calcification, including genes involved in sulfate reduction and denitrification that are thought to play pivotal roles in inorganic carbon chemistry and calcification in microbial biofilms. These findings provide new insights into the taxonomy and functional capacity of oyster calcifying fluid microbiomes, highlighting their potential contributions to shell biomineralization, and contribute to a deeper understanding of the interplay between microbial ecology and biogeochemistry that could potentially bolster oyster calcification.</p><p><strong>Importance: </strong>Previous research has underscored the influence of microbial metabolisms in carbonate deposition throughout the geological record. Despite the ecological importance of microbes to animals and inorganic carbon transformations, there have been limited studies characterizing the potential role of microbiomes in calcification by animals such as bivalves. Here, we use metagenomics to investigate the taxonomic diversity and functional potential of microbial communities in calcifying fluids from oysters collected at three different locations. We show a diverse microbial community that includes bacteria, archaea, and viruses, and we discuss their functional potential to influence calcifying fluid chemistry via reactions like sulfate reduction and denitrification. We also report the presence of carbonic anhydrase and urease, both of which are critical in microbial biofilm calcification. Our findings have broader implications in understanding what regulates calcifying fluid chemistry and consequentially the resilience of calcifying organisms to 21st century acidifying oceans.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":\" \",\"pages\":\"e0109424\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784444/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.01094-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01094-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

创造和维持适当的化学环境对于生物矿化至关重要,生物矿化是生物体沉淀矿物质形成外壳或骨架的过程,但维持钙化流体化学的机制尚未完全确定。特别是,微生物在促进或阻碍动物生物矿化中的作用知之甚少。本文研究了牡蛎钙化液中微生物群落的分类多样性和功能潜力。我们使用散弹枪宏基因组学对三个不同牡蛎采集点的钙化流体微生物群落进行了调查。在三个采集点的分类组成上有惊人的一致性。我们还在牡蛎钙化液中发现了以前未发现的古细菌和病毒。此外,我们确定了可能影响宿主钙化的微生物节能代谢,包括参与硫酸盐还原和反硝化的基因,这些基因被认为在微生物生物膜的无机碳化学和钙化中起关键作用。这些发现为牡蛎钙化流体微生物组的分类和功能能力提供了新的见解,突出了它们对贝壳生物矿化的潜在贡献,并有助于更深入地了解微生物生态学和生物地球化学之间的相互作用,这可能会促进牡蛎钙化。重要性:以往的研究强调了微生物代谢对整个地质记录中碳酸盐沉积的影响。尽管微生物对动物和无机碳转化具有重要的生态意义,但关于微生物群在动物(如双壳类动物)钙化中的潜在作用的研究有限。在这里,我们利用宏基因组学研究了在三个不同地点采集的牡蛎钙化液中微生物群落的分类多样性和功能潜力。我们展示了包括细菌、古生菌和病毒在内的多种微生物群落,并讨论了它们通过硫酸盐还原和反硝化等反应影响钙化流体化学的功能潜力。我们还报道了碳酸酐酶和脲酶的存在,这两者都是微生物生物膜钙化的关键。我们的发现对于理解是什么调节了钙化流体化学以及相应的钙化生物对21世纪酸化海洋的恢复力具有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taxonomic diversity and functional potential of microbial communities in oyster calcifying fluid.

Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid. We used shotgun metagenomics to survey calcifying fluid microbial communities from three different oyster harvesting sites. There was a striking consistency in taxonomic composition across the three collection sites. We also observed archaea and viruses that had not been previously identified in oyster calcifying fluid. Furthermore, we identified microbial energy-conserving metabolisms that could influence the host's calcification, including genes involved in sulfate reduction and denitrification that are thought to play pivotal roles in inorganic carbon chemistry and calcification in microbial biofilms. These findings provide new insights into the taxonomy and functional capacity of oyster calcifying fluid microbiomes, highlighting their potential contributions to shell biomineralization, and contribute to a deeper understanding of the interplay between microbial ecology and biogeochemistry that could potentially bolster oyster calcification.

Importance: Previous research has underscored the influence of microbial metabolisms in carbonate deposition throughout the geological record. Despite the ecological importance of microbes to animals and inorganic carbon transformations, there have been limited studies characterizing the potential role of microbiomes in calcification by animals such as bivalves. Here, we use metagenomics to investigate the taxonomic diversity and functional potential of microbial communities in calcifying fluids from oysters collected at three different locations. We show a diverse microbial community that includes bacteria, archaea, and viruses, and we discuss their functional potential to influence calcifying fluid chemistry via reactions like sulfate reduction and denitrification. We also report the presence of carbonic anhydrase and urease, both of which are critical in microbial biofilm calcification. Our findings have broader implications in understanding what regulates calcifying fluid chemistry and consequentially the resilience of calcifying organisms to 21st century acidifying oceans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Postdocs should receive relocation benefits from the universities that hire them. Systematic analysis of the glucose-PTS in Streptococcus sanguinis highlighted its importance in central metabolism and bacterial fitness. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1