Jiawei Zhou, Yanhua Kang, Yuan Gao, Xiang-Yang Ye, Hang Zhang, Tian Xie
{"title":"β-榄香烯通过靶向ALDH3B2/RPSA轴抑制非小细胞肺癌上皮间质转化。","authors":"Jiawei Zhou, Yanhua Kang, Yuan Gao, Xiang-Yang Ye, Hang Zhang, Tian Xie","doi":"10.1016/j.bcp.2024.116709","DOIUrl":null,"url":null,"abstract":"<p><p>The pharmacological mechanism of β-elemene in non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we identified aldehyde dehydrogenase 3B2 (ALDH3B2) as a pivotal target for β-elemene's anti-tumor effects in NSCLC by bioinformatic analysis. The overexpression of ALDH3B2 is specifically associated with the malignancy of NSCLC and the poor prognosis in patients with lung adenocarcinoma. Furthermore, we observed a positive correlation between ALDH3B2 levels and the sensitivity of cells to β-elemene. Additionally, we confirmed that β-elemene suppresses ALDH3B2 expression in PC-9 and NCI-H1373 cell lines. Notably, ALDH3B2 overexpression in NCI-H1373 cells resulted in enhanced migration, invasion, and a prominent epithelial-mesenchymal transition (EMT), which could be attenuated by β-elemene via inhibition of ALDH3B2 expression. Subsequent investigations demonstrated that ALDH3B2 overexpression upregulated ribosomal protein SA (RPSA) expression. β-elemene counteracted the upregulation of RPSA by suppressing ALDH3B2. Furthermore, knocking down of ALDH3B2 and β-elemene treatment significantly reduced the activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways via suppression of RPSA. In summary, our research uncovers that in NSCLC, ALDH3B2 functions as an oncogenic protein, promoting tumor progression. Meanwhile, β-elemene inhibits EMT of NSCLC by inhibition of ALDH3B2/RPSA axis and subsequently downregulating AKT and ERK signaling pathways. Our study highlights the significant role of ALDH3B2 in the progression of NSCLC, signifying it as a potential pharmacodynamic biomarker for β-elemene. These findings enrich the understanding of anti-tumor pharmacological mechanism of β-elemene, and provides new theoretical and experimental foundations for its potential application in the treatment of NSCLC.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116709"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Elemene inhibits epithelial-mesenchymal transformation in non-small cell lung cancer by targeting ALDH3B2/RPSA axis.\",\"authors\":\"Jiawei Zhou, Yanhua Kang, Yuan Gao, Xiang-Yang Ye, Hang Zhang, Tian Xie\",\"doi\":\"10.1016/j.bcp.2024.116709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pharmacological mechanism of β-elemene in non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we identified aldehyde dehydrogenase 3B2 (ALDH3B2) as a pivotal target for β-elemene's anti-tumor effects in NSCLC by bioinformatic analysis. The overexpression of ALDH3B2 is specifically associated with the malignancy of NSCLC and the poor prognosis in patients with lung adenocarcinoma. Furthermore, we observed a positive correlation between ALDH3B2 levels and the sensitivity of cells to β-elemene. Additionally, we confirmed that β-elemene suppresses ALDH3B2 expression in PC-9 and NCI-H1373 cell lines. Notably, ALDH3B2 overexpression in NCI-H1373 cells resulted in enhanced migration, invasion, and a prominent epithelial-mesenchymal transition (EMT), which could be attenuated by β-elemene via inhibition of ALDH3B2 expression. Subsequent investigations demonstrated that ALDH3B2 overexpression upregulated ribosomal protein SA (RPSA) expression. β-elemene counteracted the upregulation of RPSA by suppressing ALDH3B2. Furthermore, knocking down of ALDH3B2 and β-elemene treatment significantly reduced the activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways via suppression of RPSA. In summary, our research uncovers that in NSCLC, ALDH3B2 functions as an oncogenic protein, promoting tumor progression. Meanwhile, β-elemene inhibits EMT of NSCLC by inhibition of ALDH3B2/RPSA axis and subsequently downregulating AKT and ERK signaling pathways. Our study highlights the significant role of ALDH3B2 in the progression of NSCLC, signifying it as a potential pharmacodynamic biomarker for β-elemene. These findings enrich the understanding of anti-tumor pharmacological mechanism of β-elemene, and provides new theoretical and experimental foundations for its potential application in the treatment of NSCLC.</p>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\" \",\"pages\":\"116709\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bcp.2024.116709\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2024.116709","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
β-Elemene inhibits epithelial-mesenchymal transformation in non-small cell lung cancer by targeting ALDH3B2/RPSA axis.
The pharmacological mechanism of β-elemene in non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we identified aldehyde dehydrogenase 3B2 (ALDH3B2) as a pivotal target for β-elemene's anti-tumor effects in NSCLC by bioinformatic analysis. The overexpression of ALDH3B2 is specifically associated with the malignancy of NSCLC and the poor prognosis in patients with lung adenocarcinoma. Furthermore, we observed a positive correlation between ALDH3B2 levels and the sensitivity of cells to β-elemene. Additionally, we confirmed that β-elemene suppresses ALDH3B2 expression in PC-9 and NCI-H1373 cell lines. Notably, ALDH3B2 overexpression in NCI-H1373 cells resulted in enhanced migration, invasion, and a prominent epithelial-mesenchymal transition (EMT), which could be attenuated by β-elemene via inhibition of ALDH3B2 expression. Subsequent investigations demonstrated that ALDH3B2 overexpression upregulated ribosomal protein SA (RPSA) expression. β-elemene counteracted the upregulation of RPSA by suppressing ALDH3B2. Furthermore, knocking down of ALDH3B2 and β-elemene treatment significantly reduced the activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways via suppression of RPSA. In summary, our research uncovers that in NSCLC, ALDH3B2 functions as an oncogenic protein, promoting tumor progression. Meanwhile, β-elemene inhibits EMT of NSCLC by inhibition of ALDH3B2/RPSA axis and subsequently downregulating AKT and ERK signaling pathways. Our study highlights the significant role of ALDH3B2 in the progression of NSCLC, signifying it as a potential pharmacodynamic biomarker for β-elemene. These findings enrich the understanding of anti-tumor pharmacological mechanism of β-elemene, and provides new theoretical and experimental foundations for its potential application in the treatment of NSCLC.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.