红细胞捕获和传递细菌DNA驱动宿主反应在多微生物败血症。

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-12-12 DOI:10.1172/JCI182127
L K Metthew Lam, Nathan J Klingensmith, Layal Sayegh, Emily Oatman, Joshua S Jose, Christopher V Cosgriff, Kaitlyn A Eckart, John McGinnis, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J Meyer, Robert P Dickson, Nilam S Mangalmurti
{"title":"红细胞捕获和传递细菌DNA驱动宿主反应在多微生物败血症。","authors":"L K Metthew Lam, Nathan J Klingensmith, Layal Sayegh, Emily Oatman, Joshua S Jose, Christopher V Cosgriff, Kaitlyn A Eckart, John McGinnis, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J Meyer, Robert P Dickson, Nilam S Mangalmurti","doi":"10.1172/JCI182127","DOIUrl":null,"url":null,"abstract":"<p><p>Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not Tlr9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid Tlr9-deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severe group. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Red Blood Cells Capture and Deliver Bacterial DNA to Drive Host Responses During Polymicrobial Sepsis.\",\"authors\":\"L K Metthew Lam, Nathan J Klingensmith, Layal Sayegh, Emily Oatman, Joshua S Jose, Christopher V Cosgriff, Kaitlyn A Eckart, John McGinnis, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J Meyer, Robert P Dickson, Nilam S Mangalmurti\",\"doi\":\"10.1172/JCI182127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not Tlr9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid Tlr9-deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severe group. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI182127\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI182127","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

红血球(rbc),传统上被认为是运输氧气的角色,通过表达TLR9和清除多余的宿主无细胞DNA,在身体的免疫反应中发挥关键作用。红细胞捕获DNA导致红细胞加速清除并引发炎症。红细胞是否也能在感染期间获得微生物DNA尚不清楚。小鼠红细胞在体外获得微生物DNA, WT增强了细菌DNA诱导的巨噬细胞活化,而tlr9缺失的红细胞则不增强。在多微生物脓毒症小鼠模型中,红细胞结合的细菌DNA在WT中升高,而在红系tlr9缺失小鼠中没有升高。这些小鼠的血浆细胞因子分析显示,在受影响最严重的受试者中,以持续低体温和高炎症为特征的明显脓毒症集群。在最严重的组中,RBC-Tlr9缺失降低了血浆和组织中IL-6的产生。在人类受试者中的类似发现证实,与健康个体相比,来自败血症患者的红细胞含有更多的细菌DNA。通过对红细胞结合DNA的16S测序进一步分析,发现了不同的微生物群落,红细胞结合DNA的组成与败血症患者的血浆IL-6相关。总的来说,这些发现揭示了红细胞作为被忽视的宿主和微生物DNA的信使,能够影响败血症中宿主的炎症反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Red Blood Cells Capture and Deliver Bacterial DNA to Drive Host Responses During Polymicrobial Sepsis.

Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not Tlr9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid Tlr9-deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severe group. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Small molecule modulators of B56-PP2A restore 4E-BP function to suppress eIF4E-dependent translation in cancer cells. A whole-body imaging technique for tumor-specific diagnostics and screening of B7-H3-targeted therapies. Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome. Neonatal but not Juvenile Gene Therapy Reduces Seizures and Prolongs Lifespan in SCN1B-Dravet Syndrome Mice. Mycobacterium tuberculosis resisters despite HIV exhibit activated T cells and macrophages in their pulmonary alveoli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1