二甲双胍激活PI3K/AKT/BDNF轴,减轻术后认知功能障碍。

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2025-03-01 Epub Date: 2024-12-09 DOI:10.1016/j.neuropharm.2024.110262
Qing Wu, Xiao-Yu Jia, Shi-Hua Zhang, Yun-Zhe Wu, Long-Sheng Xu, Jun-Gang Han, Wei Yu, Qing-He Zhou
{"title":"二甲双胍激活PI3K/AKT/BDNF轴,减轻术后认知功能障碍。","authors":"Qing Wu, Xiao-Yu Jia, Shi-Hua Zhang, Yun-Zhe Wu, Long-Sheng Xu, Jun-Gang Han, Wei Yu, Qing-He Zhou","doi":"10.1016/j.neuropharm.2024.110262","DOIUrl":null,"url":null,"abstract":"<p><p>Postoperative cognitive dysfunction (POCD) is a prevalent neurocognitive complication of anesthesia and surgery. Metformin, a widely used antidiabetic drug, has neuroprotective properties and improves cognitive impairment and memory deficits. However, the mechanisms underlying its action in improving cognitive dysfunction after anesthesia and surgery remain unclear. This study aimed to explore the effects of metformin on POCD and the underlying mechanisms at play. We established an in vivo POCD model using isoflurane inhalation anesthesia with exploratory laparotomy. We found that pretreatment with metformin significantly improved cognitive function and anxiety-like behaviors in mice. Additionally, metformin attenuated the impairment of synaptic plasticity induced by POCD and restored levels of synaptic proteins and dendritic density in the hippocampus. Furthermore, metformin attenuated neuroinflammation by downregulating the expression of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, and reducing neuronal apoptosis. It also activates the PI3K/AKT signaling pathway, resulting in increased expression of brain-derived neurotrophic factor (BDNF). Finally, the PI3K inhibitor, LY294002, reversed the effects of metformin on the levels of PI3K, AKT phosphorylation, and BDNF in vitro cultured HT-22 cells. Additionally, in an in vivo model of POCD, it was observed that cognitive function in mice was significantly suppressed by treatment with the PI3K inhibitor LY294002. These results reveal that metformin may alleviate POCD by modulating the PI3K/AKT/BDNF axis. Our study may provide a novel strategy for preventing and treating POCD with this medication.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110262"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin activates the PI3K/AKT/BDNF axis to attenuate postoperative cognitive dysfunction.\",\"authors\":\"Qing Wu, Xiao-Yu Jia, Shi-Hua Zhang, Yun-Zhe Wu, Long-Sheng Xu, Jun-Gang Han, Wei Yu, Qing-He Zhou\",\"doi\":\"10.1016/j.neuropharm.2024.110262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postoperative cognitive dysfunction (POCD) is a prevalent neurocognitive complication of anesthesia and surgery. Metformin, a widely used antidiabetic drug, has neuroprotective properties and improves cognitive impairment and memory deficits. However, the mechanisms underlying its action in improving cognitive dysfunction after anesthesia and surgery remain unclear. This study aimed to explore the effects of metformin on POCD and the underlying mechanisms at play. We established an in vivo POCD model using isoflurane inhalation anesthesia with exploratory laparotomy. We found that pretreatment with metformin significantly improved cognitive function and anxiety-like behaviors in mice. Additionally, metformin attenuated the impairment of synaptic plasticity induced by POCD and restored levels of synaptic proteins and dendritic density in the hippocampus. Furthermore, metformin attenuated neuroinflammation by downregulating the expression of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, and reducing neuronal apoptosis. It also activates the PI3K/AKT signaling pathway, resulting in increased expression of brain-derived neurotrophic factor (BDNF). Finally, the PI3K inhibitor, LY294002, reversed the effects of metformin on the levels of PI3K, AKT phosphorylation, and BDNF in vitro cultured HT-22 cells. Additionally, in an in vivo model of POCD, it was observed that cognitive function in mice was significantly suppressed by treatment with the PI3K inhibitor LY294002. These results reveal that metformin may alleviate POCD by modulating the PI3K/AKT/BDNF axis. Our study may provide a novel strategy for preventing and treating POCD with this medication.</p>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\" \",\"pages\":\"110262\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuropharm.2024.110262\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2024.110262","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

术后认知功能障碍(POCD)是麻醉和手术后常见的神经认知并发症。二甲双胍是一种广泛使用的降糖药,具有神经保护作用,可以改善认知障碍和记忆缺陷。然而,其在改善麻醉和手术后认知功能障碍中的作用机制尚不清楚。本研究旨在探讨二甲双胍对POCD的影响及其潜在机制。我们采用异氟醚吸入麻醉联合剖腹探查术建立了体内POCD模型。我们发现二甲双胍预处理可以显著改善小鼠的认知功能和焦虑样行为。此外,二甲双胍可以减轻POCD引起的突触可塑性损伤,恢复海马突触蛋白水平和树突密度。此外,二甲双胍通过下调白细胞介素(IL)-6、IL-1β和肿瘤坏死因子-α的表达以及减少神经元凋亡来减轻神经炎症。它还激活PI3K/AKT信号通路,导致脑源性神经营养因子(BDNF)的表达增加。最后,PI3K抑制剂LY294002逆转了二甲双胍对体外培养HT-22细胞中PI3K、AKT磷酸化和BDNF水平的影响。此外,在POCD的体内模型中,我们观察到PI3K抑制剂LY294002显著抑制了小鼠的认知功能。这些结果表明,二甲双胍可能通过调节PI3K/AKT/BDNF轴来缓解POCD。我们的研究可能为用这种药物预防和治疗POCD提供一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metformin activates the PI3K/AKT/BDNF axis to attenuate postoperative cognitive dysfunction.

Postoperative cognitive dysfunction (POCD) is a prevalent neurocognitive complication of anesthesia and surgery. Metformin, a widely used antidiabetic drug, has neuroprotective properties and improves cognitive impairment and memory deficits. However, the mechanisms underlying its action in improving cognitive dysfunction after anesthesia and surgery remain unclear. This study aimed to explore the effects of metformin on POCD and the underlying mechanisms at play. We established an in vivo POCD model using isoflurane inhalation anesthesia with exploratory laparotomy. We found that pretreatment with metformin significantly improved cognitive function and anxiety-like behaviors in mice. Additionally, metformin attenuated the impairment of synaptic plasticity induced by POCD and restored levels of synaptic proteins and dendritic density in the hippocampus. Furthermore, metformin attenuated neuroinflammation by downregulating the expression of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, and reducing neuronal apoptosis. It also activates the PI3K/AKT signaling pathway, resulting in increased expression of brain-derived neurotrophic factor (BDNF). Finally, the PI3K inhibitor, LY294002, reversed the effects of metformin on the levels of PI3K, AKT phosphorylation, and BDNF in vitro cultured HT-22 cells. Additionally, in an in vivo model of POCD, it was observed that cognitive function in mice was significantly suppressed by treatment with the PI3K inhibitor LY294002. These results reveal that metformin may alleviate POCD by modulating the PI3K/AKT/BDNF axis. Our study may provide a novel strategy for preventing and treating POCD with this medication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles. The novel miR_146-Tfdp2 axis antagonizes METH induced neuron apoptosis and cell cycle abnormalities in tree shrew. Female Syrian hamster analyses of bremelanotide, a US FDA approved drug for the treatment of female hypoactive sexual desire disorder. Baicalin ameliorates neuroinflammation by targeting TLR4/MD2 complex on microglia via PI3K/AKT/NF-κB signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1