Highlighting五种鹅形目(家禽、鹌鹑和日本鹌鹑、巴巴里鹌鹑和楚卡鹧鸪)和一种濒临灭绝的鹅形目厚原鸨的染色体重排:条带细胞遗传学是一个强有力的工具。

IF 1 4区 生物学 Q4 GENETICS & HEREDITY Comparative Cytogenetics Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.3897/compcytogen.18.135056
Yasmine Kartout-Benmessaoud, Siham Ouchia-Benissad, Leila Mahiddine-Aoudjit, Kafia Ladjali-Mohammedi
{"title":"Highlighting五种鹅形目(家禽、鹌鹑和日本鹌鹑、巴巴里鹌鹑和楚卡鹧鸪)和一种濒临灭绝的鹅形目厚原鸨的染色体重排:条带细胞遗传学是一个强有力的工具。","authors":"Yasmine Kartout-Benmessaoud, Siham Ouchia-Benissad, Leila Mahiddine-Aoudjit, Kafia Ladjali-Mohammedi","doi":"10.3897/compcytogen.18.135056","DOIUrl":null,"url":null,"abstract":"<p><p>Birds are one of the most diverse groups among terrestrial vertebrates. They evolved from theropod dinosaurs, are closely related to the sauropsid group and separated from crocodiles about 240 million years ago. According to the IUCN, 12% of bird populations are threatened with potential extinction. Classical cytogenetics remains a powerful tool for comparing bird genomes and plays a crucial role in the preservation populations of endangered species. It thus makes it possible to detect chromosomal abnormalities responsible for early embryonic mortalities. Thus, in this work, we have provided new information on part of the evolutionary history by analysing high-resolution GTG-banded chromosomes to detect inter- and intrachromosomal rearrangements in six species. Indeed, the first eight autosomal pairs and the sex chromosomes of the domestic fowl <i>Gallusgallusdomesticus</i> Linnaeus, 1758 were compared with five species, four of which represent the order Galliformes (Common and Japanese quail, Gambras and Chukar partridge) and one Otidiformes species (Houbara bustard). Our findings suggest a high degree of conservation of the analysed ancestral chromosomes of the four Galliformes species, with the exception of (double, terminal, para and pericentric) inversions, deletion and the formation of neocentromeres (1, 2, 4, 7, 8, Z and W chromosomes). In addition to the detected rearrangements, reorganisation of the Houbara bustard chromosomes mainly included fusions and fissions involving both macro- and microchromosomes (especially on 2, 4 and Z chromosomes). We also found interchromosomal rearrangements involving shared microchromosomes (10, 11, 13, 14 and 19) between the two analysed avian orders. These rearrangements confirm that the structure of avian karyotypes will be more conserved at the interchromosomal but not at intrachromosomal scale. The appearance ofa small number of inter- and intrachromosomal rearrangements that occurred during evolution suggests a high degree of conservatism of genome organisation in these six species studied. A summary diagram of the rearrangements detected in this study is proposed to explain the chronology of the appearance of various evolutionary events starting from the ancestral karyotype.</p>","PeriodicalId":50656,"journal":{"name":"Comparative Cytogenetics","volume":"18 ","pages":"213-237"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highlighting chromosomal rearrangements of five species of Galliformes (Domestic fowl, Common and Japanese quail, Barbary and Chukar partridge) and the Houbara bustard, an endangered Otidiformes: banding cytogenetic is a powerful tool.\",\"authors\":\"Yasmine Kartout-Benmessaoud, Siham Ouchia-Benissad, Leila Mahiddine-Aoudjit, Kafia Ladjali-Mohammedi\",\"doi\":\"10.3897/compcytogen.18.135056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Birds are one of the most diverse groups among terrestrial vertebrates. They evolved from theropod dinosaurs, are closely related to the sauropsid group and separated from crocodiles about 240 million years ago. According to the IUCN, 12% of bird populations are threatened with potential extinction. Classical cytogenetics remains a powerful tool for comparing bird genomes and plays a crucial role in the preservation populations of endangered species. It thus makes it possible to detect chromosomal abnormalities responsible for early embryonic mortalities. Thus, in this work, we have provided new information on part of the evolutionary history by analysing high-resolution GTG-banded chromosomes to detect inter- and intrachromosomal rearrangements in six species. Indeed, the first eight autosomal pairs and the sex chromosomes of the domestic fowl <i>Gallusgallusdomesticus</i> Linnaeus, 1758 were compared with five species, four of which represent the order Galliformes (Common and Japanese quail, Gambras and Chukar partridge) and one Otidiformes species (Houbara bustard). Our findings suggest a high degree of conservation of the analysed ancestral chromosomes of the four Galliformes species, with the exception of (double, terminal, para and pericentric) inversions, deletion and the formation of neocentromeres (1, 2, 4, 7, 8, Z and W chromosomes). In addition to the detected rearrangements, reorganisation of the Houbara bustard chromosomes mainly included fusions and fissions involving both macro- and microchromosomes (especially on 2, 4 and Z chromosomes). We also found interchromosomal rearrangements involving shared microchromosomes (10, 11, 13, 14 and 19) between the two analysed avian orders. These rearrangements confirm that the structure of avian karyotypes will be more conserved at the interchromosomal but not at intrachromosomal scale. The appearance ofa small number of inter- and intrachromosomal rearrangements that occurred during evolution suggests a high degree of conservatism of genome organisation in these six species studied. A summary diagram of the rearrangements detected in this study is proposed to explain the chronology of the appearance of various evolutionary events starting from the ancestral karyotype.</p>\",\"PeriodicalId\":50656,\"journal\":{\"name\":\"Comparative Cytogenetics\",\"volume\":\"18 \",\"pages\":\"213-237\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3897/compcytogen.18.135056\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/compcytogen.18.135056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

鸟类是陆生脊椎动物中最多样化的群体之一。它们从兽脚亚目恐龙进化而来,与蜥脚类恐龙关系密切,大约在2.4亿年前与鳄鱼分离。据世界自然保护联盟称,12%的鸟类种群面临灭绝的威胁。经典细胞遗传学仍然是比较鸟类基因组的有力工具,在保护濒危物种种群中起着至关重要的作用。因此,它可以检测染色体异常负责早期胚胎死亡。因此,在这项工作中,我们通过分析高分辨率的gtg带状染色体来检测六个物种的染色体间和染色体内重排,为部分进化史提供了新的信息。事实上,我们将1758年家禽Gallusgallusdomesticus Linnaeus的前8对常染色体和性染色体与5个种属进行了比较,其中4个种属鹅形目(普通鹌鹑和日本鹌鹑,Gambras和Chukar鹧鸪),1个种属鹅形目(Houbara鸨)。我们的研究结果表明,除了(双、端、对和周中心)反转、缺失和新中心粒的形成(1、2、4、7、8、Z和W染色体)外,四种加利形目物种的祖先染色体高度保守。除了检测到的重排外,后原鸨染色体的重组主要包括宏染色体和微染色体的融合和分裂(特别是在2、4和Z染色体上)。我们还发现,在分析的两个鸟类目之间,染色体间重排涉及共享的微染色体(10、11、13、14和19)。这些重排证实了鸟类核型的结构在染色体间更为保守,而在染色体内则不然。在进化过程中出现的少量染色体间和染色体内重排表明,这六个物种的基因组组织具有高度的保守性。本研究中检测到的重排的总结性图表被提出来解释从祖先核型开始的各种进化事件的出现时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highlighting chromosomal rearrangements of five species of Galliformes (Domestic fowl, Common and Japanese quail, Barbary and Chukar partridge) and the Houbara bustard, an endangered Otidiformes: banding cytogenetic is a powerful tool.

Birds are one of the most diverse groups among terrestrial vertebrates. They evolved from theropod dinosaurs, are closely related to the sauropsid group and separated from crocodiles about 240 million years ago. According to the IUCN, 12% of bird populations are threatened with potential extinction. Classical cytogenetics remains a powerful tool for comparing bird genomes and plays a crucial role in the preservation populations of endangered species. It thus makes it possible to detect chromosomal abnormalities responsible for early embryonic mortalities. Thus, in this work, we have provided new information on part of the evolutionary history by analysing high-resolution GTG-banded chromosomes to detect inter- and intrachromosomal rearrangements in six species. Indeed, the first eight autosomal pairs and the sex chromosomes of the domestic fowl Gallusgallusdomesticus Linnaeus, 1758 were compared with five species, four of which represent the order Galliformes (Common and Japanese quail, Gambras and Chukar partridge) and one Otidiformes species (Houbara bustard). Our findings suggest a high degree of conservation of the analysed ancestral chromosomes of the four Galliformes species, with the exception of (double, terminal, para and pericentric) inversions, deletion and the formation of neocentromeres (1, 2, 4, 7, 8, Z and W chromosomes). In addition to the detected rearrangements, reorganisation of the Houbara bustard chromosomes mainly included fusions and fissions involving both macro- and microchromosomes (especially on 2, 4 and Z chromosomes). We also found interchromosomal rearrangements involving shared microchromosomes (10, 11, 13, 14 and 19) between the two analysed avian orders. These rearrangements confirm that the structure of avian karyotypes will be more conserved at the interchromosomal but not at intrachromosomal scale. The appearance ofa small number of inter- and intrachromosomal rearrangements that occurred during evolution suggests a high degree of conservatism of genome organisation in these six species studied. A summary diagram of the rearrangements detected in this study is proposed to explain the chronology of the appearance of various evolutionary events starting from the ancestral karyotype.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comparative Cytogenetics
Comparative Cytogenetics 生物-遗传学
CiteScore
2.40
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: Comparative Cytogenetics is a peer-reviewed, open-access, rapid online journal launched to accelerate research on all aspects of plant and animal cytogenetics, karyosystematics, and molecular systematics. All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.
期刊最新文献
Evolutionary dynamics of the B chromosomes in the fish species Prochiloduslineatus Valenciennes, 1837 of the Paraná River Basin. Gallophilous theory of cyclical parthenogenesis in aphids (Homoptera, Aphidinea). Number and location of rDNA clusters in the superfamilies Tenthredinoidea and Cynipoidea (Hymenoptera): an update. Highlighting chromosomal rearrangements of five species of Galliformes (Domestic fowl, Common and Japanese quail, Barbary and Chukar partridge) and the Houbara bustard, an endangered Otidiformes: banding cytogenetic is a powerful tool. Chromosomes of Pseudapantelesdignus (Muesebeck, 1938) and a review of known karyotypes of the subfamily Microgastrinae (Hymenoptera, Braconidae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1