通过初始编辑来设计源库关系,使番茄和水稻具有热应力恢复能力

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2024-12-13 DOI:10.1016/j.cell.2024.11.005
Huanchang Lou, Shujia Li, Zihang Shi, Yupan Zou, Yueqin Zhang, Xiaozhen Huang, Dandan Yang, Yongfang Yang, Zuoyao Li, Cao Xu
{"title":"通过初始编辑来设计源库关系,使番茄和水稻具有热应力恢复能力","authors":"Huanchang Lou, Shujia Li, Zihang Shi, Yupan Zou, Yueqin Zhang, Xiaozhen Huang, Dandan Yang, Yongfang Yang, Zuoyao Li, Cao Xu","doi":"10.1016/j.cell.2024.11.005","DOIUrl":null,"url":null,"abstract":"A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%–13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (<em>CWINs</em>) in elite rice and tomato cultivars. HSE insertion endows <em>CWINs</em> with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of <em>cis</em>-regulatory elements to optimize source-sink relations and boost crop climate resilience.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"41 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice\",\"authors\":\"Huanchang Lou, Shujia Li, Zihang Shi, Yupan Zou, Yueqin Zhang, Xiaozhen Huang, Dandan Yang, Yongfang Yang, Zuoyao Li, Cao Xu\",\"doi\":\"10.1016/j.cell.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%–13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (<em>CWINs</em>) in elite rice and tomato cultivars. HSE insertion endows <em>CWINs</em> with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of <em>cis</em>-regulatory elements to optimize source-sink relations and boost crop climate resilience.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.11.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.11.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2°C的气候变暖情景预计将使作物平均损失进一步加剧3%-13%,但几乎没有耐热的主要作物品种可以满足未来的粮食需求。在这里,我们开发了高效的引物编辑工具,以精确敲入细胞壁转化酶基因(CWINs)启动子中的10bp热休克元件(HSE)。导入HSE后,CWINs在控制环境和田间环境下均能进行热响应性上调,以增强碳对籽粒和果实的分配。与热胁迫对照相比,水稻品种“中华11”的亩产提高了25%,番茄品种“艾尔萨·克雷格”的亩产提高了33%,而果实质量没有受到惩罚。高达41%的热致谷物损失在水稻中得以挽回。除了通过有效地将定制的变化传递到作物基因组中来调整基因表达的启动编辑系统之外,我们还展示了靶向敲入顺式调控元件以优化源库关系和提高作物气候适应能力的广泛而强大的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice
A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%–13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of cis-regulatory elements to optimize source-sink relations and boost crop climate resilience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Identification, structure, and agonist design of an androgen membrane receptor Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3 Ligand interaction landscape of transcription factors and essential enzymes in E. coli Comparative proteomic landscapes elucidate human preimplantation development and failure High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1