北极气温对欧亚大陆早春雪盖变化的年际响应

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-12-09 DOI:10.1016/j.atmosres.2024.107866
Li Ma, Zhigang Wei, Ruiqiang Ding, Xianru Li, Kaili Cheng
{"title":"北极气温对欧亚大陆早春雪盖变化的年际响应","authors":"Li Ma, Zhigang Wei, Ruiqiang Ding, Xianru Li, Kaili Cheng","doi":"10.1016/j.atmosres.2024.107866","DOIUrl":null,"url":null,"abstract":"Variations in snow cover could have profound impacts on regional and large-scale circulations and climate anomalies. Previous studies have focused on their effects on mid- to low-latitude weather without considering the impacts on the Arctic climate. Here, we propose that the snow cover in Europe and Central Siberia is an important land factor for the early spring 2 m temperature (T2m) interannual variability in the Barents–Kara Sea (BKS). In years when there is less snow over Europe and Central Siberia, there are positive radiative forcing at the surface, which can lead to elevated surface air temperatures, contributing to upward surface sensible heat flux anomalies. Correspondingly, anomalous anticyclones appear in the mid-upper troposphere, accompanied by enhanced southwesterly winds over the northern side of Europe and southerly winds over the western side of Central Siberia, enhancing the transport of atmospheric heat and moisture to the BKS and their conservation. Such variations consequently increase the downwelling longwave radiation and T2m over the BKS. Moreover, the negative correlation between Eurasian SWE and BKS T2m can be identified by most CMIP6 models and by multi-model ensemble (MME) results. Additionally, the multidecadal fluctuations in the Eurasian SWE–Arctic T2m connection are strongly out of phase with the PDO index, which can be effectively captured in the CMIP6 MME results. Furthermore, among two different PDO- periods, the BKS T2m were influenced mainly by variation in SWE in Central Siberia during P1 (1962–1977) and, conversely, were impacted mainly by variation in SWE in Europe during P3 (1999–2012).","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"73 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interannual responses of Arctic temperatures to Eurasian snow cover variations in early spring\",\"authors\":\"Li Ma, Zhigang Wei, Ruiqiang Ding, Xianru Li, Kaili Cheng\",\"doi\":\"10.1016/j.atmosres.2024.107866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variations in snow cover could have profound impacts on regional and large-scale circulations and climate anomalies. Previous studies have focused on their effects on mid- to low-latitude weather without considering the impacts on the Arctic climate. Here, we propose that the snow cover in Europe and Central Siberia is an important land factor for the early spring 2 m temperature (T2m) interannual variability in the Barents–Kara Sea (BKS). In years when there is less snow over Europe and Central Siberia, there are positive radiative forcing at the surface, which can lead to elevated surface air temperatures, contributing to upward surface sensible heat flux anomalies. Correspondingly, anomalous anticyclones appear in the mid-upper troposphere, accompanied by enhanced southwesterly winds over the northern side of Europe and southerly winds over the western side of Central Siberia, enhancing the transport of atmospheric heat and moisture to the BKS and their conservation. Such variations consequently increase the downwelling longwave radiation and T2m over the BKS. Moreover, the negative correlation between Eurasian SWE and BKS T2m can be identified by most CMIP6 models and by multi-model ensemble (MME) results. Additionally, the multidecadal fluctuations in the Eurasian SWE–Arctic T2m connection are strongly out of phase with the PDO index, which can be effectively captured in the CMIP6 MME results. Furthermore, among two different PDO- periods, the BKS T2m were influenced mainly by variation in SWE in Central Siberia during P1 (1962–1977) and, conversely, were impacted mainly by variation in SWE in Europe during P3 (1999–2012).\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.atmosres.2024.107866\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107866","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interannual responses of Arctic temperatures to Eurasian snow cover variations in early spring
Variations in snow cover could have profound impacts on regional and large-scale circulations and climate anomalies. Previous studies have focused on their effects on mid- to low-latitude weather without considering the impacts on the Arctic climate. Here, we propose that the snow cover in Europe and Central Siberia is an important land factor for the early spring 2 m temperature (T2m) interannual variability in the Barents–Kara Sea (BKS). In years when there is less snow over Europe and Central Siberia, there are positive radiative forcing at the surface, which can lead to elevated surface air temperatures, contributing to upward surface sensible heat flux anomalies. Correspondingly, anomalous anticyclones appear in the mid-upper troposphere, accompanied by enhanced southwesterly winds over the northern side of Europe and southerly winds over the western side of Central Siberia, enhancing the transport of atmospheric heat and moisture to the BKS and their conservation. Such variations consequently increase the downwelling longwave radiation and T2m over the BKS. Moreover, the negative correlation between Eurasian SWE and BKS T2m can be identified by most CMIP6 models and by multi-model ensemble (MME) results. Additionally, the multidecadal fluctuations in the Eurasian SWE–Arctic T2m connection are strongly out of phase with the PDO index, which can be effectively captured in the CMIP6 MME results. Furthermore, among two different PDO- periods, the BKS T2m were influenced mainly by variation in SWE in Central Siberia during P1 (1962–1977) and, conversely, were impacted mainly by variation in SWE in Europe during P3 (1999–2012).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
Spatiotemporal evolution patterns of flood-causing rainstorm events in China from a 3D perspective Multi criteria evaluation of downscaled CMIP6 models in predicting precipitation extremes Why have extreme low-temperature events in northern Asia strengthened since the turn of the 21st century? Understanding equilibrium climate sensitivity changes from CMIP5 to CMIP6: Feedback, AMOC, and precipitation responses Tornadic environments in Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1