Ka-Kei Chau , Meilu Zhu , Abeer AlHadidi , Cheng Wang , Kuofeng Hung , Pierre Wohlgemuth , Walter Yu Hang Lam , Weicai Liu , Yixuan Yuan , Hui Chen
{"title":"一种新的CBCT检测根尖周病变的人工智能模型:CBCT- sam。","authors":"Ka-Kei Chau , Meilu Zhu , Abeer AlHadidi , Cheng Wang , Kuofeng Hung , Pierre Wohlgemuth , Walter Yu Hang Lam , Weicai Liu , Yixuan Yuan , Hui Chen","doi":"10.1016/j.jdent.2024.105526","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Periapical lesions are not always evident on radiographic scans. Sometimes, asymptomatic or initial periapical lesions on cone-beam computed tomography (CBCT) could be missed by inexperienced dentists, especially when the scan has a large field of view and is not for endodontic treatment purposes. Previously, numerous algorithms have been introduced to assist radiographic assessment and diagnosis in the field of endodontics. This study aims to investigate the efficacy of CBCT-SAM, a new artificial intelligence (AI) model, in identifying periapical lesions on CBCT.</div></div><div><h3>Methods</h3><div>Model training and validation in this study was performed using 185 CBCT scans with confirmed periapical lesions. Manual segmentation labels were prepared by a trained operator and validated by a maxillofacial radiologist. The diagnostic and segmentation performances of four AI models were evaluated and compared: CBCT-SAM, CBCT-SAM without progressive Prediction Refinement Module (PPR), and two previously developed models: Modified U-Net and PAL-Net. Accuracy was used to evaluated the diagnostic performance of the models, and accuracy, sensitivity, specificity, precision and Dice Similarity Coefficient (DSC) were used to evaluate the models’ segmentation performance.</div></div><div><h3>Results</h3><div>CBCT-SAM achieved an average diagnostic accuracy of 98.92% ± 010.37% and an average segmentation accuracy of 99.65% ± 0.66%. The average sensitivity, specificity, precision and DSC were 72.36 ± 21.61%, 99.87% ± 0.11%, 0.73 ± 0.21 and 0.70 ± 0.19. CBCT-SAM and PAL-Net performed significantly better than Modified U-Net in segmentation accuracy (<em>p</em> = 0.023, <em>p</em> = 0.041), sensitivity (<em>p</em> = 0.000, <em>p</em> = 0.002), and DSC (<em>p</em> <em>=</em> 0.001, <em>p</em> <em>=</em> 0.004). There is no significant difference between CBCT-SAM, CBCT-SAM without PPR and PAL-Net. However, with PPR incorporated into the model, CBCT-SAM slightly surpassed PAL-Net in the diagnostic and segmentation tasks.</div></div><div><h3>Conclusions</h3><div>CBCT-SAM is capable of providing expert-level assistance in the identification of periapical lesions on CBCT.</div></div><div><h3>Clinical significance</h3><div>The application of artificial intelligence could increase dentists' chairside diagnostic accuracy and efficiency. By assisting radiographic assessment, such as periapical lesions on CBCT, it helps reduce the chance of missed diagnosis by human errors and facilitates early detection and treatment of dental pathologies at the early stage.</div></div>","PeriodicalId":15585,"journal":{"name":"Journal of dentistry","volume":"153 ","pages":"Article 105526"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel AI model for detecting periapical lesion on CBCT: CBCT-SAM\",\"authors\":\"Ka-Kei Chau , Meilu Zhu , Abeer AlHadidi , Cheng Wang , Kuofeng Hung , Pierre Wohlgemuth , Walter Yu Hang Lam , Weicai Liu , Yixuan Yuan , Hui Chen\",\"doi\":\"10.1016/j.jdent.2024.105526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Periapical lesions are not always evident on radiographic scans. Sometimes, asymptomatic or initial periapical lesions on cone-beam computed tomography (CBCT) could be missed by inexperienced dentists, especially when the scan has a large field of view and is not for endodontic treatment purposes. Previously, numerous algorithms have been introduced to assist radiographic assessment and diagnosis in the field of endodontics. This study aims to investigate the efficacy of CBCT-SAM, a new artificial intelligence (AI) model, in identifying periapical lesions on CBCT.</div></div><div><h3>Methods</h3><div>Model training and validation in this study was performed using 185 CBCT scans with confirmed periapical lesions. Manual segmentation labels were prepared by a trained operator and validated by a maxillofacial radiologist. The diagnostic and segmentation performances of four AI models were evaluated and compared: CBCT-SAM, CBCT-SAM without progressive Prediction Refinement Module (PPR), and two previously developed models: Modified U-Net and PAL-Net. Accuracy was used to evaluated the diagnostic performance of the models, and accuracy, sensitivity, specificity, precision and Dice Similarity Coefficient (DSC) were used to evaluate the models’ segmentation performance.</div></div><div><h3>Results</h3><div>CBCT-SAM achieved an average diagnostic accuracy of 98.92% ± 010.37% and an average segmentation accuracy of 99.65% ± 0.66%. The average sensitivity, specificity, precision and DSC were 72.36 ± 21.61%, 99.87% ± 0.11%, 0.73 ± 0.21 and 0.70 ± 0.19. CBCT-SAM and PAL-Net performed significantly better than Modified U-Net in segmentation accuracy (<em>p</em> = 0.023, <em>p</em> = 0.041), sensitivity (<em>p</em> = 0.000, <em>p</em> = 0.002), and DSC (<em>p</em> <em>=</em> 0.001, <em>p</em> <em>=</em> 0.004). There is no significant difference between CBCT-SAM, CBCT-SAM without PPR and PAL-Net. However, with PPR incorporated into the model, CBCT-SAM slightly surpassed PAL-Net in the diagnostic and segmentation tasks.</div></div><div><h3>Conclusions</h3><div>CBCT-SAM is capable of providing expert-level assistance in the identification of periapical lesions on CBCT.</div></div><div><h3>Clinical significance</h3><div>The application of artificial intelligence could increase dentists' chairside diagnostic accuracy and efficiency. By assisting radiographic assessment, such as periapical lesions on CBCT, it helps reduce the chance of missed diagnosis by human errors and facilitates early detection and treatment of dental pathologies at the early stage.</div></div>\",\"PeriodicalId\":15585,\"journal\":{\"name\":\"Journal of dentistry\",\"volume\":\"153 \",\"pages\":\"Article 105526\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030057122400695X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dentistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030057122400695X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
A novel AI model for detecting periapical lesion on CBCT: CBCT-SAM
Objectives
Periapical lesions are not always evident on radiographic scans. Sometimes, asymptomatic or initial periapical lesions on cone-beam computed tomography (CBCT) could be missed by inexperienced dentists, especially when the scan has a large field of view and is not for endodontic treatment purposes. Previously, numerous algorithms have been introduced to assist radiographic assessment and diagnosis in the field of endodontics. This study aims to investigate the efficacy of CBCT-SAM, a new artificial intelligence (AI) model, in identifying periapical lesions on CBCT.
Methods
Model training and validation in this study was performed using 185 CBCT scans with confirmed periapical lesions. Manual segmentation labels were prepared by a trained operator and validated by a maxillofacial radiologist. The diagnostic and segmentation performances of four AI models were evaluated and compared: CBCT-SAM, CBCT-SAM without progressive Prediction Refinement Module (PPR), and two previously developed models: Modified U-Net and PAL-Net. Accuracy was used to evaluated the diagnostic performance of the models, and accuracy, sensitivity, specificity, precision and Dice Similarity Coefficient (DSC) were used to evaluate the models’ segmentation performance.
Results
CBCT-SAM achieved an average diagnostic accuracy of 98.92% ± 010.37% and an average segmentation accuracy of 99.65% ± 0.66%. The average sensitivity, specificity, precision and DSC were 72.36 ± 21.61%, 99.87% ± 0.11%, 0.73 ± 0.21 and 0.70 ± 0.19. CBCT-SAM and PAL-Net performed significantly better than Modified U-Net in segmentation accuracy (p = 0.023, p = 0.041), sensitivity (p = 0.000, p = 0.002), and DSC (p= 0.001, p= 0.004). There is no significant difference between CBCT-SAM, CBCT-SAM without PPR and PAL-Net. However, with PPR incorporated into the model, CBCT-SAM slightly surpassed PAL-Net in the diagnostic and segmentation tasks.
Conclusions
CBCT-SAM is capable of providing expert-level assistance in the identification of periapical lesions on CBCT.
Clinical significance
The application of artificial intelligence could increase dentists' chairside diagnostic accuracy and efficiency. By assisting radiographic assessment, such as periapical lesions on CBCT, it helps reduce the chance of missed diagnosis by human errors and facilitates early detection and treatment of dental pathologies at the early stage.
期刊介绍:
The Journal of Dentistry has an open access mirror journal The Journal of Dentistry: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Dentistry is the leading international dental journal within the field of Restorative Dentistry. Placing an emphasis on publishing novel and high-quality research papers, the Journal aims to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis.
Topics covered include the management of dental disease, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.
The Journal of Dentistry will publish original scientific research papers including short communications. It is also interested in publishing review articles and leaders in themed areas which will be linked to new scientific research. Conference proceedings are also welcome and expressions of interest should be communicated to the Editor.