{"title":"乳腺癌中,FVIIa-PAR2信号通过降低巨噬细胞的吞噬潜能促进免疫逃逸。","authors":"Arnab Ghosh, Avinandan Bhoumick, Subhojit Paul, Akash Chatterjee, Subhasis Mandal, Abhimanyu Basu, Soma Mukhopadhyay, Kaushik Das, Prosenjit Sen","doi":"10.1016/j.jtha.2024.11.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial to cancer growth and proliferation, but their relevance in altering the immunologic topography in tumors remains largely unknown.</p><p><strong>Objectives: </strong>In this study, we aimed to examine whether factor VIIa (FVIIa)-driven protease-activated receptor 2 (PAR2) activation and its subsequent signaling pathways assist cancer cells in evading phagocytic macrophages.</p><p><strong>Methods: </strong>Peripheral blood mononuclear cell- or THP-1-derived macrophages were cocultured with MDA-MB-468 cells that were pretreated with or without FVIIa. The phagocytic activity of macrophages was assessed through flow cytometry and immunofluorescence. Additionally, an allograft model using wild-type and PAR2-deleted 4T1 cells was employed to investigate the impact of PAR2 activation on immune escape from macrophages in vivo.</p><p><strong>Results: </strong>We found evidence that FVIIa-induced PAR2 cleavage activates downstream signaling cascades and augments cellular levels of microRNA221, which transcriptionally activates both CD47 and stanniocalcein 1 expression, thereby assisting the escape from phagocytosis by macrophages. Stanniocalcein 1 decreases the surface expression of calreticulin, a dominant prophagocytic signal, thereby tilting it in favor of phagocytic evasion. Mouse models using PAR2-depleted cells displayed smaller tumor volumes and corresponding greater phagocytic events when combined with anti-CD47/anti-PD-L1 antibodies.</p><p><strong>Conclusion: </strong>PAR2 signaling initiates an intrinsic mechanism of immune escape by diminishing phagocytosis of cancer cells.</p>","PeriodicalId":17326,"journal":{"name":"Journal of Thrombosis and Haemostasis","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FVIIa-PAR2 signaling facilitates immune escape by reducing phagocytic potential of macrophages in breast cancer.\",\"authors\":\"Arnab Ghosh, Avinandan Bhoumick, Subhojit Paul, Akash Chatterjee, Subhasis Mandal, Abhimanyu Basu, Soma Mukhopadhyay, Kaushik Das, Prosenjit Sen\",\"doi\":\"10.1016/j.jtha.2024.11.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial to cancer growth and proliferation, but their relevance in altering the immunologic topography in tumors remains largely unknown.</p><p><strong>Objectives: </strong>In this study, we aimed to examine whether factor VIIa (FVIIa)-driven protease-activated receptor 2 (PAR2) activation and its subsequent signaling pathways assist cancer cells in evading phagocytic macrophages.</p><p><strong>Methods: </strong>Peripheral blood mononuclear cell- or THP-1-derived macrophages were cocultured with MDA-MB-468 cells that were pretreated with or without FVIIa. The phagocytic activity of macrophages was assessed through flow cytometry and immunofluorescence. Additionally, an allograft model using wild-type and PAR2-deleted 4T1 cells was employed to investigate the impact of PAR2 activation on immune escape from macrophages in vivo.</p><p><strong>Results: </strong>We found evidence that FVIIa-induced PAR2 cleavage activates downstream signaling cascades and augments cellular levels of microRNA221, which transcriptionally activates both CD47 and stanniocalcein 1 expression, thereby assisting the escape from phagocytosis by macrophages. Stanniocalcein 1 decreases the surface expression of calreticulin, a dominant prophagocytic signal, thereby tilting it in favor of phagocytic evasion. Mouse models using PAR2-depleted cells displayed smaller tumor volumes and corresponding greater phagocytic events when combined with anti-CD47/anti-PD-L1 antibodies.</p><p><strong>Conclusion: </strong>PAR2 signaling initiates an intrinsic mechanism of immune escape by diminishing phagocytosis of cancer cells.</p>\",\"PeriodicalId\":17326,\"journal\":{\"name\":\"Journal of Thrombosis and Haemostasis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thrombosis and Haemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtha.2024.11.027\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thrombosis and Haemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jtha.2024.11.027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
FVIIa-PAR2 signaling facilitates immune escape by reducing phagocytic potential of macrophages in breast cancer.
Background: Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial to cancer growth and proliferation, but their relevance in altering the immunologic topography in tumors remains largely unknown.
Objectives: In this study, we aimed to examine whether factor VIIa (FVIIa)-driven protease-activated receptor 2 (PAR2) activation and its subsequent signaling pathways assist cancer cells in evading phagocytic macrophages.
Methods: Peripheral blood mononuclear cell- or THP-1-derived macrophages were cocultured with MDA-MB-468 cells that were pretreated with or without FVIIa. The phagocytic activity of macrophages was assessed through flow cytometry and immunofluorescence. Additionally, an allograft model using wild-type and PAR2-deleted 4T1 cells was employed to investigate the impact of PAR2 activation on immune escape from macrophages in vivo.
Results: We found evidence that FVIIa-induced PAR2 cleavage activates downstream signaling cascades and augments cellular levels of microRNA221, which transcriptionally activates both CD47 and stanniocalcein 1 expression, thereby assisting the escape from phagocytosis by macrophages. Stanniocalcein 1 decreases the surface expression of calreticulin, a dominant prophagocytic signal, thereby tilting it in favor of phagocytic evasion. Mouse models using PAR2-depleted cells displayed smaller tumor volumes and corresponding greater phagocytic events when combined with anti-CD47/anti-PD-L1 antibodies.
Conclusion: PAR2 signaling initiates an intrinsic mechanism of immune escape by diminishing phagocytosis of cancer cells.
期刊介绍:
The Journal of Thrombosis and Haemostasis (JTH) serves as the official journal of the International Society on Thrombosis and Haemostasis. It is dedicated to advancing science related to thrombosis, bleeding disorders, and vascular biology through the dissemination and exchange of information and ideas within the global research community.
Types of Publications:
The journal publishes a variety of content, including:
Original research reports
State-of-the-art reviews
Brief reports
Case reports
Invited commentaries on publications in the Journal
Forum articles
Correspondence
Announcements
Scope of Contributions:
Editors invite contributions from both fundamental and clinical domains. These include:
Basic manuscripts on blood coagulation and fibrinolysis
Studies on proteins and reactions related to thrombosis and haemostasis
Research on blood platelets and their interactions with other biological systems, such as the vessel wall, blood cells, and invading organisms
Clinical manuscripts covering various topics including venous thrombosis, arterial disease, hemophilia, bleeding disorders, and platelet diseases
Clinical manuscripts may encompass etiology, diagnostics, prognosis, prevention, and treatment strategies.