祖先对全基因组关联研究的影响。

Steven Christopher Jones, Katie M Cardone, Yuki Bradford, Sarah A Tishkoff, Marylyn D Ritchie
{"title":"祖先对全基因组关联研究的影响。","authors":"Steven Christopher Jones, Katie M Cardone, Yuki Bradford, Sarah A Tishkoff, Marylyn D Ritchie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) are an important tool for the study of complex disease genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can have important implications on the results and their biological interpretation. Many GWAS have been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase the representation of diverse ancestries in genetic studies. The question of how these data should be combined and the consequences that genetic variation across ancestry groups might have on GWAS results warrants further investigation. In this study, we focus on several commonly used methods for combining genetic data across diverse ancestry groups and the impact these decisions have on the outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up studies. Decisions regarding how the genetic data are combined has the potential to mask important findings that might serve individuals of ancestries that have been historically underrepresented in genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared variants need to be developed.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"251-267"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694900/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact of Ancestry on Genome-Wide Association Studies.\",\"authors\":\"Steven Christopher Jones, Katie M Cardone, Yuki Bradford, Sarah A Tishkoff, Marylyn D Ritchie\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWAS) are an important tool for the study of complex disease genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can have important implications on the results and their biological interpretation. Many GWAS have been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase the representation of diverse ancestries in genetic studies. The question of how these data should be combined and the consequences that genetic variation across ancestry groups might have on GWAS results warrants further investigation. In this study, we focus on several commonly used methods for combining genetic data across diverse ancestry groups and the impact these decisions have on the outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up studies. Decisions regarding how the genetic data are combined has the potential to mask important findings that might serve individuals of ancestries that have been historically underrepresented in genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared variants need to be developed.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"30 \",\"pages\":\"251-267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694900/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

全基因组关联研究(GWAS)是研究复杂疾病遗传学的重要工具。作为GWAS的一部分,关于质量控制(QC)程序的决定可能对结果及其生物学解释具有重要影响。许多GWAS主要是在欧洲血统的人群中进行的,但许多倡议旨在增加遗传研究中不同祖先的代表性。如何将这些数据结合起来,以及不同祖先群体的遗传变异可能对GWAS结果产生的影响,这些问题值得进一步研究。在这项研究中,我们关注几种常用的方法来组合不同祖先群体的遗传数据,以及这些决定对GWAS汇总统计结果的影响。我们使用祖先特异性、多祖先大型分析和荟萃分析方法对两种二元表型进行了GWAS。我们发现,虽然多祖先大分析和荟萃分析方法可以帮助识别跨祖先共享的信号,但它们可以减少特定祖先关联的信号并修改其效应大小。这些结果显示了对下游gwas后分析和后续研究的潜在影响。关于基因数据如何组合的决定有可能掩盖重要的发现,这些发现可能服务于历史上在基因研究中代表性不足的祖先个体。需要开发将特定于祖先的变体与共享变体结合起来考虑的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Ancestry on Genome-Wide Association Studies.

Genome-wide association studies (GWAS) are an important tool for the study of complex disease genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can have important implications on the results and their biological interpretation. Many GWAS have been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase the representation of diverse ancestries in genetic studies. The question of how these data should be combined and the consequences that genetic variation across ancestry groups might have on GWAS results warrants further investigation. In this study, we focus on several commonly used methods for combining genetic data across diverse ancestry groups and the impact these decisions have on the outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up studies. Decisions regarding how the genetic data are combined has the potential to mask important findings that might serve individuals of ancestries that have been historically underrepresented in genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared variants need to be developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface. Session Introduction: Overcoming health disparities in precision medicine: Intersectional approaches in precision medicine. Session Introduction: Precision Medicine: Multi-modal and multi-scale methods to promote mechanistic understanding of disease. Social risk factors and cardiovascular risk in obstructive sleep apnea: a systematic assessment of clinical predictors in community health centers. A Visual Analytics Framework for Assessing Interactive AI for Clinical Decision Support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1