球形流形捕获药物诱导的肿瘤细胞周期行为的变化。

Olivia Wen, Samuel C Wolff, Wayne Stallaert, Didong Li, Jeremy E Purvis, Tarek M Zikry
{"title":"球形流形捕获药物诱导的肿瘤细胞周期行为的变化。","authors":"Olivia Wen, Samuel C Wolff, Wayne Stallaert, Didong Li, Jeremy E Purvis, Tarek M Zikry","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>CDK4/6 inhibitors such as palbociclib block cell cycle progression and improve outcomes for many ER+/HER2- breast cancer patients. Unfortunately, many patients are initially resistant to the drug or develop resistance over time in part due to heterogeneity among individual tumor cells. To better understand these mechanisms of resistance, we used multiplex, single-cell imaging to profile cell cycle proteins in ER+ breast tumor cells under increasing palbociclib concentrations. We then applied spherical principal component analysis (SPCA), a dimensionality reduction method that leverages the inherently cyclical nature of the high-dimensional imaging data, to look for changes in cell cycle behavior in resistant cells. SPCA characterizes data as a hypersphere and provides a framework for visualizing and quantifying differences in cell cycles across treatment-induced perturbations. The hypersphere representations revealed shifts in the mean cell state and population heterogeneity. SPCA validated expected trends of CDK4/6 inhibitor response such as decreased expression of proliferation markers (Ki67, pRB), but also revealed potential mechanisms of resistance including increased expression of cyclin D1 and CDK2. Understanding the molecular mechanisms that allow treated tumor cells to evade arrest is critical for identifying targets of future therapies. Ultimately, we seek to further SPCA as a tool of precision medicine, targeting treatments by individual tumors, and extending this computational framework to interpret other cyclical biological processes represented by high-dimensional data.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"473-487"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687821/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spherical Manifolds Capture Drug-Induced Changes in Tumor Cell Cycle Behavior.\",\"authors\":\"Olivia Wen, Samuel C Wolff, Wayne Stallaert, Didong Li, Jeremy E Purvis, Tarek M Zikry\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CDK4/6 inhibitors such as palbociclib block cell cycle progression and improve outcomes for many ER+/HER2- breast cancer patients. Unfortunately, many patients are initially resistant to the drug or develop resistance over time in part due to heterogeneity among individual tumor cells. To better understand these mechanisms of resistance, we used multiplex, single-cell imaging to profile cell cycle proteins in ER+ breast tumor cells under increasing palbociclib concentrations. We then applied spherical principal component analysis (SPCA), a dimensionality reduction method that leverages the inherently cyclical nature of the high-dimensional imaging data, to look for changes in cell cycle behavior in resistant cells. SPCA characterizes data as a hypersphere and provides a framework for visualizing and quantifying differences in cell cycles across treatment-induced perturbations. The hypersphere representations revealed shifts in the mean cell state and population heterogeneity. SPCA validated expected trends of CDK4/6 inhibitor response such as decreased expression of proliferation markers (Ki67, pRB), but also revealed potential mechanisms of resistance including increased expression of cyclin D1 and CDK2. Understanding the molecular mechanisms that allow treated tumor cells to evade arrest is critical for identifying targets of future therapies. Ultimately, we seek to further SPCA as a tool of precision medicine, targeting treatments by individual tumors, and extending this computational framework to interpret other cyclical biological processes represented by high-dimensional data.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"30 \",\"pages\":\"473-487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

帕博西尼等CDK4/6抑制剂阻断了许多ER+/HER2-乳腺癌患者的细胞周期进展并改善了预后。不幸的是,许多患者最初对药物产生耐药性,或者随着时间的推移产生耐药性,部分原因是单个肿瘤细胞之间的异质性。为了更好地理解这些耐药机制,我们使用多重单细胞成像来分析在帕博西尼浓度增加的情况下ER+乳腺肿瘤细胞的细胞周期蛋白。然后,我们应用了球形主成分分析(SPCA),一种利用高维成像数据固有周期性的降维方法,来寻找耐药细胞中细胞周期行为的变化。SPCA将数据表征为超球,并提供了一个框架,用于可视化和量化治疗诱导的扰动中细胞周期的差异。超球表示揭示了平均细胞状态和种群异质性的变化。SPCA验证了CDK4/6抑制剂反应的预期趋势,如增殖标志物(Ki67, pRB)的表达降低,但也揭示了潜在的耐药机制,包括cyclin D1和CDK2的表达增加。了解允许治疗的肿瘤细胞逃避捕获的分子机制对于确定未来治疗的靶点至关重要。最终,我们寻求进一步将SPCA作为精准医学的工具,针对单个肿瘤进行治疗,并扩展该计算框架来解释由高维数据代表的其他周期性生物过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spherical Manifolds Capture Drug-Induced Changes in Tumor Cell Cycle Behavior.

CDK4/6 inhibitors such as palbociclib block cell cycle progression and improve outcomes for many ER+/HER2- breast cancer patients. Unfortunately, many patients are initially resistant to the drug or develop resistance over time in part due to heterogeneity among individual tumor cells. To better understand these mechanisms of resistance, we used multiplex, single-cell imaging to profile cell cycle proteins in ER+ breast tumor cells under increasing palbociclib concentrations. We then applied spherical principal component analysis (SPCA), a dimensionality reduction method that leverages the inherently cyclical nature of the high-dimensional imaging data, to look for changes in cell cycle behavior in resistant cells. SPCA characterizes data as a hypersphere and provides a framework for visualizing and quantifying differences in cell cycles across treatment-induced perturbations. The hypersphere representations revealed shifts in the mean cell state and population heterogeneity. SPCA validated expected trends of CDK4/6 inhibitor response such as decreased expression of proliferation markers (Ki67, pRB), but also revealed potential mechanisms of resistance including increased expression of cyclin D1 and CDK2. Understanding the molecular mechanisms that allow treated tumor cells to evade arrest is critical for identifying targets of future therapies. Ultimately, we seek to further SPCA as a tool of precision medicine, targeting treatments by individual tumors, and extending this computational framework to interpret other cyclical biological processes represented by high-dimensional data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface. Session Introduction: Overcoming health disparities in precision medicine: Intersectional approaches in precision medicine. Session Introduction: Precision Medicine: Multi-modal and multi-scale methods to promote mechanistic understanding of disease. Social risk factors and cardiovascular risk in obstructive sleep apnea: a systematic assessment of clinical predictors in community health centers. A Visual Analytics Framework for Assessing Interactive AI for Clinical Decision Support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1