Alexis T Akerele, Jacqueline A Piekos, Jeewoo Kim, Nikhil K Khankari, Jacklyn N Hellwege, Todd L Edwards, Digna R Velez Edwards
{"title":"子宫肌瘤显示出与血压特征共享遗传结构的证据。","authors":"Alexis T Akerele, Jacqueline A Piekos, Jeewoo Kim, Nikhil K Khankari, Jacklyn N Hellwege, Todd L Edwards, Digna R Velez Edwards","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Uterine leiomyomata (fibroids, UFs) are common, benign tumors in females, having an estimated prevalence of up to 80%. They are fibrous masses growing within the myometrium leading to chronic symptoms like dysmenorrhea, abnormal uterine bleeding, anemia, severe pelvic pain, and infertility. Hypertension (HTN) is a common risk factor for UFs, though less prevalent in premenopausal individuals. While observational studies have indicated strong associations between UFs and HTN, the biological mechanisms linking the two conditions remain unclear. Understanding the relationship between HTN and UFs is crucial because UFs and HTN lead to substantial comorbidities adversely impacting female health. Identifying the common underlying biological mechanisms can improve treatment strategies for both conditions. To clarify the genetic and causal relationships between UFs and BP, we conducted a bidirectional, two-sample Mendelian randomization (MR) analysis and evaluated the genetic correlations across BP traits and UFs. We used data from a multi-ancestry genome-wide association study (GWAS) meta-analysis of UFs (44,205 cases and 356,552 controls), and data from a cross-ancestry GWAS meta-analysis of BP phenotypes (diastolic BP [DBP], systolic BP [SBP], and pulse pressure [PP], N=447,758). We evaluated genetic correlation of BP phenotypes and UFs with linkage disequilibrium score regression (LDSC). LDSC results indicated a positive genetic correlation between DBP and UFs (Rg=0.132, p<5.0x10-5), and SBP and UFs (Rg=0.063, p<2.5x10-2). MR using UFs as the exposure and BP traits as outcomes indicated a relationship where UFs increases DBP (odds ratio [OR]=1.20, p<2.7x10-3). Having BP traits as exposures and UFs as the outcome showed that DBP and SBP increase risk for UFs (OR =1.04, p<2.2x10-3; OR=1.00, p<4.0x10-2; respectively). Our results provide evidence of shared genetic architecture and pleiotropy between HTN and UFs, suggesting common biological pathways driving their etiologies. Based on these findings, DBP appears to be a stronger risk factor for UFs compared to SBP and PP.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"281-295"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649017/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uterine fibroids show evidence of shared genetic architecture with blood pressure traits.\",\"authors\":\"Alexis T Akerele, Jacqueline A Piekos, Jeewoo Kim, Nikhil K Khankari, Jacklyn N Hellwege, Todd L Edwards, Digna R Velez Edwards\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uterine leiomyomata (fibroids, UFs) are common, benign tumors in females, having an estimated prevalence of up to 80%. They are fibrous masses growing within the myometrium leading to chronic symptoms like dysmenorrhea, abnormal uterine bleeding, anemia, severe pelvic pain, and infertility. Hypertension (HTN) is a common risk factor for UFs, though less prevalent in premenopausal individuals. While observational studies have indicated strong associations between UFs and HTN, the biological mechanisms linking the two conditions remain unclear. Understanding the relationship between HTN and UFs is crucial because UFs and HTN lead to substantial comorbidities adversely impacting female health. Identifying the common underlying biological mechanisms can improve treatment strategies for both conditions. To clarify the genetic and causal relationships between UFs and BP, we conducted a bidirectional, two-sample Mendelian randomization (MR) analysis and evaluated the genetic correlations across BP traits and UFs. We used data from a multi-ancestry genome-wide association study (GWAS) meta-analysis of UFs (44,205 cases and 356,552 controls), and data from a cross-ancestry GWAS meta-analysis of BP phenotypes (diastolic BP [DBP], systolic BP [SBP], and pulse pressure [PP], N=447,758). We evaluated genetic correlation of BP phenotypes and UFs with linkage disequilibrium score regression (LDSC). LDSC results indicated a positive genetic correlation between DBP and UFs (Rg=0.132, p<5.0x10-5), and SBP and UFs (Rg=0.063, p<2.5x10-2). MR using UFs as the exposure and BP traits as outcomes indicated a relationship where UFs increases DBP (odds ratio [OR]=1.20, p<2.7x10-3). Having BP traits as exposures and UFs as the outcome showed that DBP and SBP increase risk for UFs (OR =1.04, p<2.2x10-3; OR=1.00, p<4.0x10-2; respectively). Our results provide evidence of shared genetic architecture and pleiotropy between HTN and UFs, suggesting common biological pathways driving their etiologies. Based on these findings, DBP appears to be a stronger risk factor for UFs compared to SBP and PP.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"30 \",\"pages\":\"281-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
子宫平滑肌瘤(肌瘤,UFs)是女性常见的良性肿瘤,估计患病率高达80%。它们是生长在子宫肌层内的纤维团块,导致慢性症状,如痛经、子宫异常出血、贫血、严重盆腔疼痛和不孕症。高血压(HTN)是UFs的常见危险因素,尽管在绝经前个体中不太普遍。虽然观察性研究表明UFs和HTN之间存在很强的联系,但将这两种情况联系起来的生物学机制仍不清楚。了解HTN和UFs之间的关系至关重要,因为UFs和HTN会导致大量合并症,对女性健康产生不利影响。确定共同的潜在生物学机制可以改善这两种疾病的治疗策略。为了明确UFs与BP之间的遗传和因果关系,我们进行了双向、双样本孟德尔随机化(MR)分析,并评估了BP性状与UFs之间的遗传相关性。我们使用了来自UFs(44,205例和356,552例对照)的多祖先全基因组关联研究(GWAS)荟萃分析数据,以及来自BP表型(舒张压[DBP]、收缩压[SBP]和脉压[PP], N=447,758)的跨祖先GWAS荟萃分析数据。我们用连锁不平衡评分回归(LDSC)评估了BP表型和UFs的遗传相关性。LDSC结果显示DBP与UFs呈正遗传相关(Rg=0.132, p
Uterine fibroids show evidence of shared genetic architecture with blood pressure traits.
Uterine leiomyomata (fibroids, UFs) are common, benign tumors in females, having an estimated prevalence of up to 80%. They are fibrous masses growing within the myometrium leading to chronic symptoms like dysmenorrhea, abnormal uterine bleeding, anemia, severe pelvic pain, and infertility. Hypertension (HTN) is a common risk factor for UFs, though less prevalent in premenopausal individuals. While observational studies have indicated strong associations between UFs and HTN, the biological mechanisms linking the two conditions remain unclear. Understanding the relationship between HTN and UFs is crucial because UFs and HTN lead to substantial comorbidities adversely impacting female health. Identifying the common underlying biological mechanisms can improve treatment strategies for both conditions. To clarify the genetic and causal relationships between UFs and BP, we conducted a bidirectional, two-sample Mendelian randomization (MR) analysis and evaluated the genetic correlations across BP traits and UFs. We used data from a multi-ancestry genome-wide association study (GWAS) meta-analysis of UFs (44,205 cases and 356,552 controls), and data from a cross-ancestry GWAS meta-analysis of BP phenotypes (diastolic BP [DBP], systolic BP [SBP], and pulse pressure [PP], N=447,758). We evaluated genetic correlation of BP phenotypes and UFs with linkage disequilibrium score regression (LDSC). LDSC results indicated a positive genetic correlation between DBP and UFs (Rg=0.132, p<5.0x10-5), and SBP and UFs (Rg=0.063, p<2.5x10-2). MR using UFs as the exposure and BP traits as outcomes indicated a relationship where UFs increases DBP (odds ratio [OR]=1.20, p<2.7x10-3). Having BP traits as exposures and UFs as the outcome showed that DBP and SBP increase risk for UFs (OR =1.04, p<2.2x10-3; OR=1.00, p<4.0x10-2; respectively). Our results provide evidence of shared genetic architecture and pleiotropy between HTN and UFs, suggesting common biological pathways driving their etiologies. Based on these findings, DBP appears to be a stronger risk factor for UFs compared to SBP and PP.