使用 Wirtinger 梯度的原子约束无网格 DOA 精化

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-11-11 DOI:10.1109/OJSP.2024.3496815
Yongsung Park;Peter Gerstoft;Christoph F. Mecklenbräuker
{"title":"使用 Wirtinger 梯度的原子约束无网格 DOA 精化","authors":"Yongsung Park;Peter Gerstoft;Christoph F. Mecklenbräuker","doi":"10.1109/OJSP.2024.3496815","DOIUrl":null,"url":null,"abstract":"This paper proposes gridless sparse direction-of-arrival (DOA) refinement using gradient-based optimization. The objective function minimizes the fit between the sample covariance matrix (SCM) and a reconstructed covariance matrix. The latter is constrained to contain only a few atoms, but otherwise maximally matches the SCM. This reconstruction enables analytic derivatives with respect to DOA using Wirtinger gradients. The sensitivity of the solution to local minima is addressed by initializing near the true DOAs, where a user-input-free gridded sparse Bayesian learning is employed. Numerical results validate the effectiveness of the DOA refinement using analytic gradients, demonstrating its ability to reach the Cramér-Rao bound and achieve higher resolution compared to conventional gridless DOA estimation methods. The approach is validated by considering different numbers of DOAs, grid sizes, DOAs on/off the grid, fewer (even a single) snapshots, coherent arrivals, closely separated DOAs, and many DOAs.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1134-1146"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750433","citationCount":"0","resultStr":"{\"title\":\"Atom-Constrained Gridless DOA Refinement With Wirtinger Gradients\",\"authors\":\"Yongsung Park;Peter Gerstoft;Christoph F. Mecklenbräuker\",\"doi\":\"10.1109/OJSP.2024.3496815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes gridless sparse direction-of-arrival (DOA) refinement using gradient-based optimization. The objective function minimizes the fit between the sample covariance matrix (SCM) and a reconstructed covariance matrix. The latter is constrained to contain only a few atoms, but otherwise maximally matches the SCM. This reconstruction enables analytic derivatives with respect to DOA using Wirtinger gradients. The sensitivity of the solution to local minima is addressed by initializing near the true DOAs, where a user-input-free gridded sparse Bayesian learning is employed. Numerical results validate the effectiveness of the DOA refinement using analytic gradients, demonstrating its ability to reach the Cramér-Rao bound and achieve higher resolution compared to conventional gridless DOA estimation methods. The approach is validated by considering different numbers of DOAs, grid sizes, DOAs on/off the grid, fewer (even a single) snapshots, coherent arrivals, closely separated DOAs, and many DOAs.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"1134-1146\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750433\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750433/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750433/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出利用基于梯度的优化方法进行无网格稀疏到达方向(DOA)细化。目标函数最小化样本协方差矩阵(SCM)与重建协方差矩阵之间的拟合。重建的协方差矩阵受限于只包含几个原子,但在其他方面最大限度地与 SCM 匹配。通过这种重建方法,可以利用 Wirtinger 梯度对 DOA 进行分析求导。通过在真实 DOA 附近进行初始化,解决了求解对局部最小值的敏感性问题。数值结果验证了使用解析梯度进行 DOA 精化的有效性,表明与传统的无网格 DOA 估算方法相比,该方法能够达到 Cramér-Rao 约束并实现更高的分辨率。通过考虑不同的 DOA 数量、网格大小、网格内/外的 DOA、较少(甚至单一)的快照、相干到达、紧密分离的 DOA 以及许多 DOA,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atom-Constrained Gridless DOA Refinement With Wirtinger Gradients
This paper proposes gridless sparse direction-of-arrival (DOA) refinement using gradient-based optimization. The objective function minimizes the fit between the sample covariance matrix (SCM) and a reconstructed covariance matrix. The latter is constrained to contain only a few atoms, but otherwise maximally matches the SCM. This reconstruction enables analytic derivatives with respect to DOA using Wirtinger gradients. The sensitivity of the solution to local minima is addressed by initializing near the true DOAs, where a user-input-free gridded sparse Bayesian learning is employed. Numerical results validate the effectiveness of the DOA refinement using analytic gradients, demonstrating its ability to reach the Cramér-Rao bound and achieve higher resolution compared to conventional gridless DOA estimation methods. The approach is validated by considering different numbers of DOAs, grid sizes, DOAs on/off the grid, fewer (even a single) snapshots, coherent arrivals, closely separated DOAs, and many DOAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Correction to “Energy Efficient Signal Detection Using SPRT and Ordered Transmissions in Wireless Sensor Networks” List of Reviewers Charbonnier Quasi Hyperbolic Momentum Spline Based Incremental Strategy for Nonlinear Distributed Active Noise Control Iterative Sparse Identification of Nonlinear Dynamics JEP-KD: Joint-Embedding Predictive Architecture Based Knowledge Distillation for Visual Speech Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1