{"title":"小檗碱通过促进 N-乙基马来酰亚胺敏感因子介导的自噬体与溶酶体融合,增强自噬通量以缓解缺血性神经元损伤。","authors":"Wenting Zhuang, Zhiwen Huang, Liling Yu, Meilin Yu, Hongyun He, Yihao Deng","doi":"10.1016/j.bcp.2024.116715","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons. This study was to investigate whether BBR-ameliorated autophagic flux was exerted by reinforcing NSF activity, which subsequently boosted autophagosome-lysosome fusion in ischemic neurons. Rat model of ischemic stroke and neuronal ischemia model of HT22 cells were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. BBR was intraperitoneally administrated with 100 mg/Kg/d for 3 days before MCAO and was treated with 90 μM in HT22 neurons for 12 h, respectively. The results illustrated that NSF activity was markedly reinforced to facilitate autophagosome-lysosome fusion in penumbral cells and OGD HT22 neurons by BBR treatment. Consequently, the ischemia-created autophagic/lysosomal dysfunction was greatly restored to alleviate ischemic injury. Thereafter, NSF activity in OGD HT22 neurons was altered by transfection with NSF-overexpressing lentiviruses and siRNA-mediated knockdown, respectively. The data showed that BBR-enhanced autophagic flux and it-induced neuroprotection were greatly counteracted by NSF knockdown. By contrast, NSF overexpression synergistically boosted autophagosome-lysosome fusion and further attenuated neuronal death upon BBR treatment. Therefore, our study indicates that BBR-conferred neuroprotection against ischemic stroke is induced through facilitating autophagosome-lysosome fusion, by which enhancing autophagic flux in ischemic neurons.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116715"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berberine enhances autophagic flux to alleviate ischemic neuronal injury by facilitating N-ethylmaleimide-sensitive factor-mediated fusion of autophagosomes with lysosomes.\",\"authors\":\"Wenting Zhuang, Zhiwen Huang, Liling Yu, Meilin Yu, Hongyun He, Yihao Deng\",\"doi\":\"10.1016/j.bcp.2024.116715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons. This study was to investigate whether BBR-ameliorated autophagic flux was exerted by reinforcing NSF activity, which subsequently boosted autophagosome-lysosome fusion in ischemic neurons. Rat model of ischemic stroke and neuronal ischemia model of HT22 cells were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. BBR was intraperitoneally administrated with 100 mg/Kg/d for 3 days before MCAO and was treated with 90 μM in HT22 neurons for 12 h, respectively. The results illustrated that NSF activity was markedly reinforced to facilitate autophagosome-lysosome fusion in penumbral cells and OGD HT22 neurons by BBR treatment. Consequently, the ischemia-created autophagic/lysosomal dysfunction was greatly restored to alleviate ischemic injury. Thereafter, NSF activity in OGD HT22 neurons was altered by transfection with NSF-overexpressing lentiviruses and siRNA-mediated knockdown, respectively. The data showed that BBR-enhanced autophagic flux and it-induced neuroprotection were greatly counteracted by NSF knockdown. By contrast, NSF overexpression synergistically boosted autophagosome-lysosome fusion and further attenuated neuronal death upon BBR treatment. Therefore, our study indicates that BBR-conferred neuroprotection against ischemic stroke is induced through facilitating autophagosome-lysosome fusion, by which enhancing autophagic flux in ischemic neurons.</p>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\" \",\"pages\":\"116715\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bcp.2024.116715\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2024.116715","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Berberine enhances autophagic flux to alleviate ischemic neuronal injury by facilitating N-ethylmaleimide-sensitive factor-mediated fusion of autophagosomes with lysosomes.
Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons. This study was to investigate whether BBR-ameliorated autophagic flux was exerted by reinforcing NSF activity, which subsequently boosted autophagosome-lysosome fusion in ischemic neurons. Rat model of ischemic stroke and neuronal ischemia model of HT22 cells were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. BBR was intraperitoneally administrated with 100 mg/Kg/d for 3 days before MCAO and was treated with 90 μM in HT22 neurons for 12 h, respectively. The results illustrated that NSF activity was markedly reinforced to facilitate autophagosome-lysosome fusion in penumbral cells and OGD HT22 neurons by BBR treatment. Consequently, the ischemia-created autophagic/lysosomal dysfunction was greatly restored to alleviate ischemic injury. Thereafter, NSF activity in OGD HT22 neurons was altered by transfection with NSF-overexpressing lentiviruses and siRNA-mediated knockdown, respectively. The data showed that BBR-enhanced autophagic flux and it-induced neuroprotection were greatly counteracted by NSF knockdown. By contrast, NSF overexpression synergistically boosted autophagosome-lysosome fusion and further attenuated neuronal death upon BBR treatment. Therefore, our study indicates that BBR-conferred neuroprotection against ischemic stroke is induced through facilitating autophagosome-lysosome fusion, by which enhancing autophagic flux in ischemic neurons.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.