Wilms肿瘤1蛋白的多面功能:从各种恶性肿瘤的表达到靶向治疗。

IF 4.5 2区 医学 Q1 ONCOLOGY Translational Oncology Pub Date : 2025-02-01 Epub Date: 2024-12-12 DOI:10.1016/j.tranon.2024.102237
Qing Nian, Yan Lin, Jinhao Zeng, Yanna Zhang, Rongxing Liu
{"title":"Wilms肿瘤1蛋白的多面功能:从各种恶性肿瘤的表达到靶向治疗。","authors":"Qing Nian, Yan Lin, Jinhao Zeng, Yanna Zhang, Rongxing Liu","doi":"10.1016/j.tranon.2024.102237","DOIUrl":null,"url":null,"abstract":"<p><p>Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.</p>","PeriodicalId":23244,"journal":{"name":"Translational Oncology","volume":"52 ","pages":"102237"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy.\",\"authors\":\"Qing Nian, Yan Lin, Jinhao Zeng, Yanna Zhang, Rongxing Liu\",\"doi\":\"10.1016/j.tranon.2024.102237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.</p>\",\"PeriodicalId\":23244,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"52 \",\"pages\":\"102237\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tranon.2024.102237\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tranon.2024.102237","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Wilms tumor 1 (WT1)是一种具有双重功能的多面蛋白,既可作为肿瘤抑制因子,又可作为癌基因的转录激活因子。WT1在各种类型的实体瘤和白血病中高表达,其表达升高与患者预后不良相关。高WT1表达也表明难治性疾病或复发的风险更高。因此,靶向WT1是预防疾病和减轻复发的有效策略。关于WT1在各种疾病中的发病机制已有大量信息,并且有几种WT1靶向治疗,包括化学药物、天然产物和靶向疫苗。我们对WT1影响恶性肿瘤的机制进行了全面的综述,并对由此产生的治疗方法进行了彻底的总结。本文提供了WT1在不同癌症发病机制中的作用,并为针对WT1的药物和免疫疗法提供了见解。本研究的目的是为wt1相关研究的现状和未来发展方向提供一个系统的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy.

Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational Oncology
Translational Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
7.20
自引率
2.00%
发文量
314
审稿时长
6-12 weeks
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
期刊最新文献
Autophagy activation in response to cigarette smoke: Exploring the disparity in laryngeal cancer incidence and outcomes between sexes in South Korea. Exogenous dihomo-γ-linolenic acid triggers ferroptosis via ACSL4-mediated lipid metabolic reprogramming in acute myeloid leukemia cells. MAGI2-AS3 hypermethylated in promoter region promotes migration and invasion of head and neck squamous cell carcinoma via miRNA-31-5p/AR axis. Development and validation of a prognostic and drug sensitivity model for gastric cancer utilizing telomere-related genes. Modified CD15/CD16-CLL1 inhibitory CAR-T cells for mitigating granulocytopenia toxicities in the treatment of acute myeloid leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1