赛车在俯仰和翻滚姿态下的空气动力特性

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Numerical Methods for Heat & Fluid Flow Pub Date : 2024-12-17 DOI:10.1108/hff-05-2024-0375
Xiaojing Ma, Jie Li, Jun Zhao, Jiliang Chen
{"title":"赛车在俯仰和翻滚姿态下的空气动力特性","authors":"Xiaojing Ma, Jie Li, Jun Zhao, Jiliang Chen","doi":"10.1108/hff-05-2024-0375","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Aerodynamics plays a crucial role in enhancing the performance of race cars. Due to the low ride height, the aerodynamic components of race cars are affected by ground effects. The changes in pitch and roll attitudes during the car’s movement impact its ride height. This study aims to analyze the aerodynamic characteristics of race cars under specific pitch and roll attitudes to understand the underlying aerodynamic mechanisms. This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off‑body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The grid strategy for the computational fluid dynamics (CFD) method was established under baseline conditions and compared with the results from wind tunnel experiments. The CFD approach was further employed to investigate the aerodynamic characteristics of the racing car under varying body postures associated with different vehicle ride heights. Emphasis is placed on the overall aerodynamic performance of the vehicle and the various components’ influence on the changing trends of aerodynamic forces. By considering the surface pressure distribution of the car, the primary reasons behind the changes in aerodynamic forces for each component are investigated. In addition, the surface flow and detached flow (wake and vortex distributions) of the car were observed to gain insights into the overall flow field behavior under different attitudes.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings indicate that both pitch and roll attitudes result in a considerable loss of downforce on the front wing compared with other components, thereby affecting the overall downforce and aerodynamic balance of the vehicle.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off-body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"11 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic characteristics of the race car in pitch and roll attitude\",\"authors\":\"Xiaojing Ma, Jie Li, Jun Zhao, Jiliang Chen\",\"doi\":\"10.1108/hff-05-2024-0375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Aerodynamics plays a crucial role in enhancing the performance of race cars. Due to the low ride height, the aerodynamic components of race cars are affected by ground effects. The changes in pitch and roll attitudes during the car’s movement impact its ride height. This study aims to analyze the aerodynamic characteristics of race cars under specific pitch and roll attitudes to understand the underlying aerodynamic mechanisms. This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off‑body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The grid strategy for the computational fluid dynamics (CFD) method was established under baseline conditions and compared with the results from wind tunnel experiments. The CFD approach was further employed to investigate the aerodynamic characteristics of the racing car under varying body postures associated with different vehicle ride heights. Emphasis is placed on the overall aerodynamic performance of the vehicle and the various components’ influence on the changing trends of aerodynamic forces. By considering the surface pressure distribution of the car, the primary reasons behind the changes in aerodynamic forces for each component are investigated. In addition, the surface flow and detached flow (wake and vortex distributions) of the car were observed to gain insights into the overall flow field behavior under different attitudes.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The findings indicate that both pitch and roll attitudes result in a considerable loss of downforce on the front wing compared with other components, thereby affecting the overall downforce and aerodynamic balance of the vehicle.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off-body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-05-2024-0375\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-05-2024-0375","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamic characteristics of the race car in pitch and roll attitude

Purpose

Aerodynamics plays a crucial role in enhancing the performance of race cars. Due to the low ride height, the aerodynamic components of race cars are affected by ground effects. The changes in pitch and roll attitudes during the car’s movement impact its ride height. This study aims to analyze the aerodynamic characteristics of race cars under specific pitch and roll attitudes to understand the underlying aerodynamic mechanisms. This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off‑body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.

Design/methodology/approach

The grid strategy for the computational fluid dynamics (CFD) method was established under baseline conditions and compared with the results from wind tunnel experiments. The CFD approach was further employed to investigate the aerodynamic characteristics of the racing car under varying body postures associated with different vehicle ride heights. Emphasis is placed on the overall aerodynamic performance of the vehicle and the various components’ influence on the changing trends of aerodynamic forces. By considering the surface pressure distribution of the car, the primary reasons behind the changes in aerodynamic forces for each component are investigated. In addition, the surface flow and detached flow (wake and vortex distributions) of the car were observed to gain insights into the overall flow field behavior under different attitudes.

Findings

The findings indicate that both pitch and roll attitudes result in a considerable loss of downforce on the front wing compared with other components, thereby affecting the overall downforce and aerodynamic balance of the vehicle.

Originality/value

This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off-body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
期刊最新文献
Influence of radiative heat transfer on hybrid nanofluid across a curved surface with porous medium Optimizing bioconvective heat transfer with MHD Eyring–Powell nanofluids containing motile microorganisms with viscosity variability and porous media in ciliated microchannels Numerical research on two typical flow structures and aerodynamic drag characteristics of blunt-nosed trains Rayleigh-type wave in thermo-poroelastic media with dual-phase-lag heat conduction Entropy analysis of convective nanofluid flow with Brownian motion in an annular space between confocal elliptic cylinders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1