次优集合变量的增强采样:兼顾精度与收敛速度

Dhiman, Ray, Valerio, Rizzi
{"title":"次优集合变量的增强采样:兼顾精度与收敛速度","authors":"Dhiman, Ray, Valerio, Rizzi","doi":"10.26434/chemrxiv-2024-mfpcn-v2","DOIUrl":null,"url":null,"abstract":"We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the On-the-fly probability enhanced sampling (OPES) and its exploratory variant, OPES Explore (OPESe). This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate. This is accomplished We demonstrate the successful application of this combined algorithm on the two-dimensional Wolfe-Quapp potential, millisecond timescale ligand-receptor binding in trypsin-benzamidine complex, and folding-unfolding transitions in chignolin mini-protein. Our proposed algorithm can compute accurate free energies at an affordable computational cost and is robust in terms of the choice of collective variables, making it particularly promising for the simulation of complex biomolecular systems.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Sampling with Sub-optimal Collective Variables: Reconciling Accuracy and Convergence Speed\",\"authors\":\"Dhiman, Ray, Valerio, Rizzi\",\"doi\":\"10.26434/chemrxiv-2024-mfpcn-v2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the On-the-fly probability enhanced sampling (OPES) and its exploratory variant, OPES Explore (OPESe). This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate. This is accomplished We demonstrate the successful application of this combined algorithm on the two-dimensional Wolfe-Quapp potential, millisecond timescale ligand-receptor binding in trypsin-benzamidine complex, and folding-unfolding transitions in chignolin mini-protein. Our proposed algorithm can compute accurate free energies at an affordable computational cost and is robust in terms of the choice of collective variables, making it particularly promising for the simulation of complex biomolecular systems.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-mfpcn-v2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-mfpcn-v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种增强采样算法,即使用于偏置的集体变量(CV)不是最佳的,也能获得收敛的分子稀有事件自由能谱。我们的方法通过结合即时概率增强采样(OPES)及其探索性变体 OPES 探索(OPESe),对随时间变化的目标分布进行采样。这促进了相关可变状态之间的更多转换,并加快了自由能估计的收敛速度。我们在二维 Wolfe-Quapp 势、胰蛋白酶-苯甲脒复合物中毫秒级配体-受体结合以及木犀草素小蛋白的折叠-解折叠跃迁中演示了这一组合算法的成功应用。我们提出的算法能以可承受的计算成本计算出精确的自由能,并且在集体变量的选择上具有鲁棒性,因此特别适合模拟复杂的生物分子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Sampling with Sub-optimal Collective Variables: Reconciling Accuracy and Convergence Speed
We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the On-the-fly probability enhanced sampling (OPES) and its exploratory variant, OPES Explore (OPESe). This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate. This is accomplished We demonstrate the successful application of this combined algorithm on the two-dimensional Wolfe-Quapp potential, millisecond timescale ligand-receptor binding in trypsin-benzamidine complex, and folding-unfolding transitions in chignolin mini-protein. Our proposed algorithm can compute accurate free energies at an affordable computational cost and is robust in terms of the choice of collective variables, making it particularly promising for the simulation of complex biomolecular systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ligand-induced Changes in the Electrocatalytic Activity of Atomically Precise Au₂₅ Nanoclusters Binding mechanism of adenylate kinase-specific monobodies Photochemistry of Ni(II) tolyl chlorides supported by bidentate ligand frameworks A Chemical Investigation Approach of the Paraconiothyrium sp. FKR-0637 Fungal Strain Enables the Isolation of the New Chlorinated Chromone, Nohocumone Development of an Automated Workflow for Screening the Assembly and Host-Guest Behaviour of Metal-Organic Cages towards Accelerated Discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1