{"title":"miR-451a和miR-486-5p:苯诱导血液毒性的生物标记物。","authors":"Yanrong Lv, Zongxin Li, Yuncong Chen, Fei Qin, Qilong Liao, Zhaorui Zhang, Qifei Deng, Qing Liu, Zihao Long, Qing Wang, Wen Chen, Yongmei Xiao, Xiumei Xing","doi":"10.1007/s00204-024-03923-y","DOIUrl":null,"url":null,"abstract":"<div><p>The hematopoietic system is the primary target of benzene exposure. Whether peripheral blood miRNA can serve as sensitive biomarkers for benzene-induced hematopoietic damage has attracted considerable attention. This study focuses on exploring the role of miR-451a and miR-486-5p in benzene-induced erythroid damage and assessing their potential as biomarkers of benzene-induced hematotoxicity. Animal experiments and human studies were conducted to reveal expression patterns of miR-451a and miR-486-5p in bone marrow and peripheral blood after benzene exposure, along with their correlations with erythrocyte indices. In C57BL/6J mice exposed to benzene, the expression levels of miR-451a and miR-486-5p in bone marrow decreased, which also positively correlated with red blood cell count (RBC), hemoglobin (Hb), and hematocrit (HCT). Conversely, in peripheral blood of C57BL/6J mice, the expression levels of the two miRNAs increased and showed a negative correlation with the three erythroid indices. Subsequent validation in bone marrow samples of chronic benzene poisoning patients and peripheral blood of workers from petrochemical plant confirmed significant correlations between miR-451a and miR-486-5p expression levels and red blood cell parameters. Furthermore, receiver operator characteristic (ROC) curve analyses revealed that miR-451a emerged as a potential biomarker for benzene-induced hematotoxicity, exhibiting superior discriminatory power compared to miR-486-5p and conventional erythroid indices. Additionally, in vitro experiments using K562 cells revealed differential regulatory effects of benzene metabolite hydroquinone (HQ) on miR-451a expression based on erythroid differentiation status. These findings emphasized the important role of miR-451a and miR-486-5p in benzene-induced erythrogenesis disruption, offering valuable insights for biomarker development and therapeutic interventions.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"717 - 728"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-451a and miR-486-5p: biomarkers for benzene-induced hematotoxicity\",\"authors\":\"Yanrong Lv, Zongxin Li, Yuncong Chen, Fei Qin, Qilong Liao, Zhaorui Zhang, Qifei Deng, Qing Liu, Zihao Long, Qing Wang, Wen Chen, Yongmei Xiao, Xiumei Xing\",\"doi\":\"10.1007/s00204-024-03923-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hematopoietic system is the primary target of benzene exposure. Whether peripheral blood miRNA can serve as sensitive biomarkers for benzene-induced hematopoietic damage has attracted considerable attention. This study focuses on exploring the role of miR-451a and miR-486-5p in benzene-induced erythroid damage and assessing their potential as biomarkers of benzene-induced hematotoxicity. Animal experiments and human studies were conducted to reveal expression patterns of miR-451a and miR-486-5p in bone marrow and peripheral blood after benzene exposure, along with their correlations with erythrocyte indices. In C57BL/6J mice exposed to benzene, the expression levels of miR-451a and miR-486-5p in bone marrow decreased, which also positively correlated with red blood cell count (RBC), hemoglobin (Hb), and hematocrit (HCT). Conversely, in peripheral blood of C57BL/6J mice, the expression levels of the two miRNAs increased and showed a negative correlation with the three erythroid indices. Subsequent validation in bone marrow samples of chronic benzene poisoning patients and peripheral blood of workers from petrochemical plant confirmed significant correlations between miR-451a and miR-486-5p expression levels and red blood cell parameters. Furthermore, receiver operator characteristic (ROC) curve analyses revealed that miR-451a emerged as a potential biomarker for benzene-induced hematotoxicity, exhibiting superior discriminatory power compared to miR-486-5p and conventional erythroid indices. Additionally, in vitro experiments using K562 cells revealed differential regulatory effects of benzene metabolite hydroquinone (HQ) on miR-451a expression based on erythroid differentiation status. These findings emphasized the important role of miR-451a and miR-486-5p in benzene-induced erythrogenesis disruption, offering valuable insights for biomarker development and therapeutic interventions.</p></div>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\"99 2\",\"pages\":\"717 - 728\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00204-024-03923-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00204-024-03923-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
miR-451a and miR-486-5p: biomarkers for benzene-induced hematotoxicity
The hematopoietic system is the primary target of benzene exposure. Whether peripheral blood miRNA can serve as sensitive biomarkers for benzene-induced hematopoietic damage has attracted considerable attention. This study focuses on exploring the role of miR-451a and miR-486-5p in benzene-induced erythroid damage and assessing their potential as biomarkers of benzene-induced hematotoxicity. Animal experiments and human studies were conducted to reveal expression patterns of miR-451a and miR-486-5p in bone marrow and peripheral blood after benzene exposure, along with their correlations with erythrocyte indices. In C57BL/6J mice exposed to benzene, the expression levels of miR-451a and miR-486-5p in bone marrow decreased, which also positively correlated with red blood cell count (RBC), hemoglobin (Hb), and hematocrit (HCT). Conversely, in peripheral blood of C57BL/6J mice, the expression levels of the two miRNAs increased and showed a negative correlation with the three erythroid indices. Subsequent validation in bone marrow samples of chronic benzene poisoning patients and peripheral blood of workers from petrochemical plant confirmed significant correlations between miR-451a and miR-486-5p expression levels and red blood cell parameters. Furthermore, receiver operator characteristic (ROC) curve analyses revealed that miR-451a emerged as a potential biomarker for benzene-induced hematotoxicity, exhibiting superior discriminatory power compared to miR-486-5p and conventional erythroid indices. Additionally, in vitro experiments using K562 cells revealed differential regulatory effects of benzene metabolite hydroquinone (HQ) on miR-451a expression based on erythroid differentiation status. These findings emphasized the important role of miR-451a and miR-486-5p in benzene-induced erythrogenesis disruption, offering valuable insights for biomarker development and therapeutic interventions.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.