{"title":"用于肺部给药的吡非尼酮微晶:过冷液滴中沉淀行为的调节。","authors":"Kangwei Lu, Shen Yan, Baoyun Li, Jingye Ma, Xinpei Wu, Wenqi Yan, Shengyu Zhang, Xiao Dong Chen, Winston Duo Wu","doi":"10.1016/j.ijpharm.2024.125074","DOIUrl":null,"url":null,"abstract":"<div><div>Pirfenidone (PFD) is one of the first-line drugs for treating idiopathic pulmonary fibrosis, while directly delivering PFD to lung showed better efficiency. However, PFD is a non-glass former and easily precipitates into larger-sized crystals that are undesirable for pulmonary delivery. Hence, the fabrication of PFD particles with pulmonary delivery efficiency remains challenging. Herein, a series of particles were prepared by spray freeze drying a PFD and leucine mixed solution. The sub-ambient behavior of the mixed solution was evaluated via a differential scanning calorimeter. The effects of the PFD/leucine mass ratio and freezing temperature on the particle morphology, size, crystal polymorphism, molecular structure and <em>in vitro</em> aerosol performance were investigated. Shortening the lifetime of the droplet and adding proper amounts of leucine are the keys to decreasing the PFD crystal size and improving its dispersity. The optimal sample is SF<sub>-80</sub>D-P<sub>95</sub>L<sub>5</sub>-2, with high FPF and eFPF values of ∼ 65.97 % and ∼ 27.86 %, and owing to its high drug loading (95 %), the FPD and eFPD are extremely high at ∼ 6.27 mg and ∼ 2.65 mg, respectively, equivalent to ∼ 6.27 mg and ∼ 2.65 mg PFD deposited in the lungs and alveoli, respectively, when 10 mg dry powder is inhaled. This work provides a potential strategy for tuning the precipitation behavior of PFD microcrystals with high pulmonary drug delivery efficiency.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125074"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pirfenidone microcrystals for pulmonary delivery: Regulation of the precipitation behavior in the supercooled droplet\",\"authors\":\"Kangwei Lu, Shen Yan, Baoyun Li, Jingye Ma, Xinpei Wu, Wenqi Yan, Shengyu Zhang, Xiao Dong Chen, Winston Duo Wu\",\"doi\":\"10.1016/j.ijpharm.2024.125074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pirfenidone (PFD) is one of the first-line drugs for treating idiopathic pulmonary fibrosis, while directly delivering PFD to lung showed better efficiency. However, PFD is a non-glass former and easily precipitates into larger-sized crystals that are undesirable for pulmonary delivery. Hence, the fabrication of PFD particles with pulmonary delivery efficiency remains challenging. Herein, a series of particles were prepared by spray freeze drying a PFD and leucine mixed solution. The sub-ambient behavior of the mixed solution was evaluated via a differential scanning calorimeter. The effects of the PFD/leucine mass ratio and freezing temperature on the particle morphology, size, crystal polymorphism, molecular structure and <em>in vitro</em> aerosol performance were investigated. Shortening the lifetime of the droplet and adding proper amounts of leucine are the keys to decreasing the PFD crystal size and improving its dispersity. The optimal sample is SF<sub>-80</sub>D-P<sub>95</sub>L<sub>5</sub>-2, with high FPF and eFPF values of ∼ 65.97 % and ∼ 27.86 %, and owing to its high drug loading (95 %), the FPD and eFPD are extremely high at ∼ 6.27 mg and ∼ 2.65 mg, respectively, equivalent to ∼ 6.27 mg and ∼ 2.65 mg PFD deposited in the lungs and alveoli, respectively, when 10 mg dry powder is inhaled. This work provides a potential strategy for tuning the precipitation behavior of PFD microcrystals with high pulmonary drug delivery efficiency.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"669 \",\"pages\":\"Article 125074\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324013085\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324013085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Pirfenidone microcrystals for pulmonary delivery: Regulation of the precipitation behavior in the supercooled droplet
Pirfenidone (PFD) is one of the first-line drugs for treating idiopathic pulmonary fibrosis, while directly delivering PFD to lung showed better efficiency. However, PFD is a non-glass former and easily precipitates into larger-sized crystals that are undesirable for pulmonary delivery. Hence, the fabrication of PFD particles with pulmonary delivery efficiency remains challenging. Herein, a series of particles were prepared by spray freeze drying a PFD and leucine mixed solution. The sub-ambient behavior of the mixed solution was evaluated via a differential scanning calorimeter. The effects of the PFD/leucine mass ratio and freezing temperature on the particle morphology, size, crystal polymorphism, molecular structure and in vitro aerosol performance were investigated. Shortening the lifetime of the droplet and adding proper amounts of leucine are the keys to decreasing the PFD crystal size and improving its dispersity. The optimal sample is SF-80D-P95L5-2, with high FPF and eFPF values of ∼ 65.97 % and ∼ 27.86 %, and owing to its high drug loading (95 %), the FPD and eFPD are extremely high at ∼ 6.27 mg and ∼ 2.65 mg, respectively, equivalent to ∼ 6.27 mg and ∼ 2.65 mg PFD deposited in the lungs and alveoli, respectively, when 10 mg dry powder is inhaled. This work provides a potential strategy for tuning the precipitation behavior of PFD microcrystals with high pulmonary drug delivery efficiency.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.