HSPA5的激活通过l-鸟氨酸代谢途径和内质网应激导致帕唑帕尼诱导的肝毒性。

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacy and Pharmacology Pub Date : 2024-11-30 DOI:10.1093/jpp/rgae130
Jian Chen, Tieming Zhu, Yaping Deng, Jinliang Chen, Guojun Jiang, Qiaojun He
{"title":"HSPA5的激活通过l-鸟氨酸代谢途径和内质网应激导致帕唑帕尼诱导的肝毒性。","authors":"Jian Chen, Tieming Zhu, Yaping Deng, Jinliang Chen, Guojun Jiang, Qiaojun He","doi":"10.1093/jpp/rgae130","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The clinical application of Pazopanib (Paz) is often accompanied by hepatotoxicity. However, the mechanisms of hepatic toxicity induced by pazopanib are not entirely clarified.</p><p><strong>Methods: </strong>Male C57BL/6J mice were treated with pazopanib every day for 2, 4, or 8 weeks. Transcriptomics and metabolomics analyses of liver tissues were performed. In vitro experiments were carried out to estimate cell viability, apoptosis, and autophagy in L02 cells after Paz treatment. We also examined apoptosis and autophagy-related genes under 4-PBA, l-ornithine, nor-NOHA treatments, and HSPA5 knockdown.</p><p><strong>Key findings: </strong>Repeated Paz treatment for 8 weeks resulted in more severe hypofunction of the liver in mice. Moreover, Paz treatment inhibited L02 cells cell viability in a dose-dependent manner. We also discovered activation of endoplasmic reticulum stress, apoptosis, and autophagy in Paz-treated L02 cells, as evidenced by the boosted expression of HSPA5, p-IRE1α, ATF4, ATF6, p-eIF2α, LC3, Beclin-1, and a decrease of phosphorylated PI3K, AKT, and mTOR levels. Moreover, 4-PBA, l-ornithine, and HSPA5 knockdown inhibited apoptosis and autophagy, while nor-NOHA weakened the effects of HSPA5 knockdown on apoptosis in Paz-treated L02 cells.</p><p><strong>Conclusions: </strong>In summary, our study revealed that Paz-induced liver toxicity is related to HSPA5 expression and l-ornithine metabolism pathway in mice.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of HSPA5 contributes to pazopanib-induced hepatotoxicity through l-ornithine metabolism pathway and endoplasmic reticulum stress.\",\"authors\":\"Jian Chen, Tieming Zhu, Yaping Deng, Jinliang Chen, Guojun Jiang, Qiaojun He\",\"doi\":\"10.1093/jpp/rgae130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The clinical application of Pazopanib (Paz) is often accompanied by hepatotoxicity. However, the mechanisms of hepatic toxicity induced by pazopanib are not entirely clarified.</p><p><strong>Methods: </strong>Male C57BL/6J mice were treated with pazopanib every day for 2, 4, or 8 weeks. Transcriptomics and metabolomics analyses of liver tissues were performed. In vitro experiments were carried out to estimate cell viability, apoptosis, and autophagy in L02 cells after Paz treatment. We also examined apoptosis and autophagy-related genes under 4-PBA, l-ornithine, nor-NOHA treatments, and HSPA5 knockdown.</p><p><strong>Key findings: </strong>Repeated Paz treatment for 8 weeks resulted in more severe hypofunction of the liver in mice. Moreover, Paz treatment inhibited L02 cells cell viability in a dose-dependent manner. We also discovered activation of endoplasmic reticulum stress, apoptosis, and autophagy in Paz-treated L02 cells, as evidenced by the boosted expression of HSPA5, p-IRE1α, ATF4, ATF6, p-eIF2α, LC3, Beclin-1, and a decrease of phosphorylated PI3K, AKT, and mTOR levels. Moreover, 4-PBA, l-ornithine, and HSPA5 knockdown inhibited apoptosis and autophagy, while nor-NOHA weakened the effects of HSPA5 knockdown on apoptosis in Paz-treated L02 cells.</p><p><strong>Conclusions: </strong>In summary, our study revealed that Paz-induced liver toxicity is related to HSPA5 expression and l-ornithine metabolism pathway in mice.</p>\",\"PeriodicalId\":16960,\"journal\":{\"name\":\"Journal of Pharmacy and Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jpp/rgae130\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:帕唑帕尼(Paz)的临床应用常伴有肝毒性。然而,帕唑帕尼引起肝毒性的机制尚不完全清楚。方法:雄性C57BL/6J小鼠每天给予帕唑帕尼治疗2、4、8周。对肝组织进行转录组学和代谢组学分析。通过体外实验观察Paz处理后L02细胞的细胞活力、凋亡和自噬情况。我们还检测了4-PBA、l-鸟氨酸、非noha处理和HSPA5敲低下的细胞凋亡和自噬相关基因。主要发现:重复Paz治疗8周导致小鼠肝脏功能减退更严重。此外,Paz处理以剂量依赖的方式抑制L02细胞的细胞活力。我们还发现,在paz处理的L02细胞中,内质网应激、凋亡和自噬被激活,HSPA5、p-IRE1α、ATF4、ATF6、p-eIF2α、LC3、Beclin-1的表达增加,磷酸化的PI3K、AKT和mTOR水平降低。此外,4-PBA、l-鸟氨酸和HSPA5敲低可抑制paz处理的L02细胞的凋亡和自噬,而no - noha可减弱HSPA5敲低对凋亡的影响。结论:综上所述,我们的研究揭示了paz诱导的小鼠肝毒性与HSPA5的表达和l-鸟氨酸代谢途径有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activation of HSPA5 contributes to pazopanib-induced hepatotoxicity through l-ornithine metabolism pathway and endoplasmic reticulum stress.

Objectives: The clinical application of Pazopanib (Paz) is often accompanied by hepatotoxicity. However, the mechanisms of hepatic toxicity induced by pazopanib are not entirely clarified.

Methods: Male C57BL/6J mice were treated with pazopanib every day for 2, 4, or 8 weeks. Transcriptomics and metabolomics analyses of liver tissues were performed. In vitro experiments were carried out to estimate cell viability, apoptosis, and autophagy in L02 cells after Paz treatment. We also examined apoptosis and autophagy-related genes under 4-PBA, l-ornithine, nor-NOHA treatments, and HSPA5 knockdown.

Key findings: Repeated Paz treatment for 8 weeks resulted in more severe hypofunction of the liver in mice. Moreover, Paz treatment inhibited L02 cells cell viability in a dose-dependent manner. We also discovered activation of endoplasmic reticulum stress, apoptosis, and autophagy in Paz-treated L02 cells, as evidenced by the boosted expression of HSPA5, p-IRE1α, ATF4, ATF6, p-eIF2α, LC3, Beclin-1, and a decrease of phosphorylated PI3K, AKT, and mTOR levels. Moreover, 4-PBA, l-ornithine, and HSPA5 knockdown inhibited apoptosis and autophagy, while nor-NOHA weakened the effects of HSPA5 knockdown on apoptosis in Paz-treated L02 cells.

Conclusions: In summary, our study revealed that Paz-induced liver toxicity is related to HSPA5 expression and l-ornithine metabolism pathway in mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
91
审稿时长
3 months
期刊介绍: JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.
期刊最新文献
In vitro antidiabetic activity of Treculia africana leaf extracts: identification of chlorogenic acid and α-mangostin. Tiaogan Jiejiu Tongluo formula alleviates hepatic steatosis in NAFLD mice by regulating AMPK signaling pathway. Integrated metabolomics and network pharmacology analysis to reveal the mechanisms of naringin against atherosclerosis. The natural polyphenol fisetin in atherosclerosis prevention: a mechanistic review. A prediction method for the individual serum concentration and therapeutic effect for optimizing adalimumab therapy in inflammatory bowel disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1