基于自适应拉普拉斯协调增强型交叉特征 U-Net 的云检测网络。

Kaizheng Wang, Ruohan Zhou, Jian Wang, Ferrante Neri, Yitong Fu, Shunzhen Zhou
{"title":"基于自适应拉普拉斯协调增强型交叉特征 U-Net 的云检测网络。","authors":"Kaizheng Wang, Ruohan Zhou, Jian Wang, Ferrante Neri, Yitong Fu, Shunzhen Zhou","doi":"10.1142/S0129065725500054","DOIUrl":null,"url":null,"abstract":"<p><p>Cloud cover experiences rapid fluctuations, significantly impacting the irradiance reaching the ground and causing frequent variations in photovoltaic power output. Accurate detection of thin and fragmented clouds is crucial for reliable photovoltaic power generation forecasting. In this paper, we introduce a novel cloud detection method, termed Adaptive Laplacian Coordination Enhanced Cross-Feature U-Net (ALCU-Net). This method augments the traditional U-Net architecture with three innovative components: an Adaptive Feature Coordination (AFC) module, an Adaptive Laplacian Cross-Feature U-Net with a Multi-Grained Laplacian-Enhanced (MLE) feature module, and a Criss-Cross Feature Fused Detection (CCFE) module. The AFC module enhances spatial coherence and bridges semantic gaps across multi-channel images. The Adaptive Laplacian Cross-Feature U-Net integrates features from adjacent hierarchical levels, using the MLE module to refine cloud characteristics and edge details over time. The CCFE module, embedded in the U-Net decoder, leverages criss-cross features to improve detection accuracy. Experimental evaluations show that ALCU-Net consistently outperforms existing cloud detection methods, demonstrating superior accuracy in identifying both thick and thin clouds and in mapping fragmented cloud patches across various environments, including oceans, polar regions, and complex ocean-land mixtures.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550005"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cloud Detection Network Based on Adaptive Laplacian Coordination Enhanced Cross-Feature U-Net.\",\"authors\":\"Kaizheng Wang, Ruohan Zhou, Jian Wang, Ferrante Neri, Yitong Fu, Shunzhen Zhou\",\"doi\":\"10.1142/S0129065725500054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cloud cover experiences rapid fluctuations, significantly impacting the irradiance reaching the ground and causing frequent variations in photovoltaic power output. Accurate detection of thin and fragmented clouds is crucial for reliable photovoltaic power generation forecasting. In this paper, we introduce a novel cloud detection method, termed Adaptive Laplacian Coordination Enhanced Cross-Feature U-Net (ALCU-Net). This method augments the traditional U-Net architecture with three innovative components: an Adaptive Feature Coordination (AFC) module, an Adaptive Laplacian Cross-Feature U-Net with a Multi-Grained Laplacian-Enhanced (MLE) feature module, and a Criss-Cross Feature Fused Detection (CCFE) module. The AFC module enhances spatial coherence and bridges semantic gaps across multi-channel images. The Adaptive Laplacian Cross-Feature U-Net integrates features from adjacent hierarchical levels, using the MLE module to refine cloud characteristics and edge details over time. The CCFE module, embedded in the U-Net decoder, leverages criss-cross features to improve detection accuracy. Experimental evaluations show that ALCU-Net consistently outperforms existing cloud detection methods, demonstrating superior accuracy in identifying both thick and thin clouds and in mapping fragmented cloud patches across various environments, including oceans, polar regions, and complex ocean-land mixtures.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云量波动迅速,严重影响到达地面的辐照度,导致光伏发电输出频繁变化。准确探测薄云和碎片云对于光伏发电的可靠预测至关重要。本文介绍了一种新的云检测方法,称为自适应拉普拉斯协调增强交叉特征U-Net (ALCU-Net)。该方法对传统的U-Net体系结构进行了改进,采用了三个创新组件:自适应特征协调(AFC)模块、带有多粒度拉普拉斯增强(MLE)特征模块的自适应拉普拉斯交叉特征U-Net模块和交叉特征融合检测(CCFE)模块。AFC模块增强了空间一致性,并在多通道图像之间弥合了语义差距。自适应拉普拉斯交叉特征U-Net集成了相邻层次的特征,使用MLE模块随着时间的推移细化云特征和边缘细节。CCFE模块,嵌入在U-Net解码器,利用纵横交错的特点,以提高检测精度。实验评估表明,ALCU-Net始终优于现有的云检测方法,在识别厚云和薄云以及在各种环境(包括海洋、极地和复杂的海洋-陆地混合)中绘制碎片云斑块方面表现出卓越的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cloud Detection Network Based on Adaptive Laplacian Coordination Enhanced Cross-Feature U-Net.

Cloud cover experiences rapid fluctuations, significantly impacting the irradiance reaching the ground and causing frequent variations in photovoltaic power output. Accurate detection of thin and fragmented clouds is crucial for reliable photovoltaic power generation forecasting. In this paper, we introduce a novel cloud detection method, termed Adaptive Laplacian Coordination Enhanced Cross-Feature U-Net (ALCU-Net). This method augments the traditional U-Net architecture with three innovative components: an Adaptive Feature Coordination (AFC) module, an Adaptive Laplacian Cross-Feature U-Net with a Multi-Grained Laplacian-Enhanced (MLE) feature module, and a Criss-Cross Feature Fused Detection (CCFE) module. The AFC module enhances spatial coherence and bridges semantic gaps across multi-channel images. The Adaptive Laplacian Cross-Feature U-Net integrates features from adjacent hierarchical levels, using the MLE module to refine cloud characteristics and edge details over time. The CCFE module, embedded in the U-Net decoder, leverages criss-cross features to improve detection accuracy. Experimental evaluations show that ALCU-Net consistently outperforms existing cloud detection methods, demonstrating superior accuracy in identifying both thick and thin clouds and in mapping fragmented cloud patches across various environments, including oceans, polar regions, and complex ocean-land mixtures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Label Zero-Shot Learning Via Contrastive Label-Based Attention. Unraveling the Differential Efficiency of Dorsal and Ventral Pathways in Visual Semantic Decoding. Neural Memory State Space Models for Medical Image Segmentation. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1