粒间断裂的扩展赖斯模型

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-12-09 DOI:10.1016/j.ijmecsci.2024.109891
Kai Zhao, Yu Ding, Haiyang Yu, Jianying He, Zhiliang Zhang
{"title":"粒间断裂的扩展赖斯模型","authors":"Kai Zhao, Yu Ding, Haiyang Yu, Jianying He, Zhiliang Zhang","doi":"10.1016/j.ijmecsci.2024.109891","DOIUrl":null,"url":null,"abstract":"The plastic events occurring during the process of intergranular fracture in metals is still not well understood due to the complexity of grain boundary (GB) structures and their interactions with crack-tip dislocation plasticity. By considering the local GB structural transformation after dislocation emission from a GB in the Peierls-type Rice-Beltz model, herein we established a semi-analytical transition-state-theory-based framework to predict the most probable Mode-I stress intensity factor (SIF) for dislocation emission from a cracked GB. Using large-scale molecular dynamics (MD) simulations, we studied the fracture behaviors of bi-crystalline Fe samples with 12 different symmetric tilt GBs inside. The MD results demonstrate that the presence of GB could significantly change the SIF required for the activation of plastic events, confirming the theoretical predictions that attributes this to the energy change caused by the transformation of GB structure. Both the atomistic simulation and the theoretical model consistently indicate that, the critical dynamic SIF (<mml:math altimg=\"si18.svg\"><mml:mrow><mml:msubsup><mml:mi>K</mml:mi><mml:mi>I</mml:mi><mml:mi>c</mml:mi></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>) at which the dynamic SIF <ce:italic>K<ce:inf loc=\"post\">I</ce:inf></ce:italic>(<ce:italic>t</ce:italic>) deviates from the linearity with respect to the strain ε, increases with the increasing loading rate. However, the classical Rice model underestimates the <mml:math altimg=\"si18.svg\"><mml:mrow><mml:msubsup><mml:mi>K</mml:mi><mml:mi>I</mml:mi><mml:mi>c</mml:mi></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> due to its failure to consider the effects of localized fields. The present theoretical model provides a mechanism-based framework for the application of grain boundary engineering in the design and fabrication of nano-grained metals.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"250 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended Rice model for intergranular fracture\",\"authors\":\"Kai Zhao, Yu Ding, Haiyang Yu, Jianying He, Zhiliang Zhang\",\"doi\":\"10.1016/j.ijmecsci.2024.109891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plastic events occurring during the process of intergranular fracture in metals is still not well understood due to the complexity of grain boundary (GB) structures and their interactions with crack-tip dislocation plasticity. By considering the local GB structural transformation after dislocation emission from a GB in the Peierls-type Rice-Beltz model, herein we established a semi-analytical transition-state-theory-based framework to predict the most probable Mode-I stress intensity factor (SIF) for dislocation emission from a cracked GB. Using large-scale molecular dynamics (MD) simulations, we studied the fracture behaviors of bi-crystalline Fe samples with 12 different symmetric tilt GBs inside. The MD results demonstrate that the presence of GB could significantly change the SIF required for the activation of plastic events, confirming the theoretical predictions that attributes this to the energy change caused by the transformation of GB structure. Both the atomistic simulation and the theoretical model consistently indicate that, the critical dynamic SIF (<mml:math altimg=\\\"si18.svg\\\"><mml:mrow><mml:msubsup><mml:mi>K</mml:mi><mml:mi>I</mml:mi><mml:mi>c</mml:mi></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>) at which the dynamic SIF <ce:italic>K<ce:inf loc=\\\"post\\\">I</ce:inf></ce:italic>(<ce:italic>t</ce:italic>) deviates from the linearity with respect to the strain ε, increases with the increasing loading rate. However, the classical Rice model underestimates the <mml:math altimg=\\\"si18.svg\\\"><mml:mrow><mml:msubsup><mml:mi>K</mml:mi><mml:mi>I</mml:mi><mml:mi>c</mml:mi></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> due to its failure to consider the effects of localized fields. The present theoretical model provides a mechanism-based framework for the application of grain boundary engineering in the design and fabrication of nano-grained metals.\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"250 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijmecsci.2024.109891\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2024.109891","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于晶界(GB)结构的复杂性及其与裂纹尖端位错塑性的相互作用,人们对金属晶间断裂过程中发生的塑性事件仍不甚了解。通过在 Peierls 型 Rice-Beltz 模型中考虑位错从 GB 发射后的局部 GB 结构转变,我们在此建立了一个基于过渡状态理论的半分析框架,以预测位错从裂纹 GB 发射的最可能模式 I 应力强度因子 (SIF)。利用大规模分子动力学(MD)模拟,我们研究了内含 12 种不同对称倾斜 GB 的双晶铁样品的断裂行为。MD 结果表明,GB 的存在会显著改变激活塑性事件所需的 SIF,这证实了理论预测,即这归因于 GB 结构转变引起的能量变化。原子模拟和理论模型一致表明,临界动态 SIF(KIc(t))随着加载速率的增加而增加,在此临界点上,动态 SIF KI(t) 偏离了应变 ε 的线性关系。然而,经典的赖斯模型由于没有考虑局部场的影响而低估了 KIc(t)。本理论模型为晶界工程在纳米晶粒金属设计和制造中的应用提供了一个基于机理的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An extended Rice model for intergranular fracture
The plastic events occurring during the process of intergranular fracture in metals is still not well understood due to the complexity of grain boundary (GB) structures and their interactions with crack-tip dislocation plasticity. By considering the local GB structural transformation after dislocation emission from a GB in the Peierls-type Rice-Beltz model, herein we established a semi-analytical transition-state-theory-based framework to predict the most probable Mode-I stress intensity factor (SIF) for dislocation emission from a cracked GB. Using large-scale molecular dynamics (MD) simulations, we studied the fracture behaviors of bi-crystalline Fe samples with 12 different symmetric tilt GBs inside. The MD results demonstrate that the presence of GB could significantly change the SIF required for the activation of plastic events, confirming the theoretical predictions that attributes this to the energy change caused by the transformation of GB structure. Both the atomistic simulation and the theoretical model consistently indicate that, the critical dynamic SIF (KIc(t)) at which the dynamic SIF KI(t) deviates from the linearity with respect to the strain ε, increases with the increasing loading rate. However, the classical Rice model underestimates the KIc(t) due to its failure to consider the effects of localized fields. The present theoretical model provides a mechanism-based framework for the application of grain boundary engineering in the design and fabrication of nano-grained metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Vibration transmission in lubricated piston-liner systems: Experimental and multi-physics coupled analysis Modeling of CFRP hybrid lap joints via energy-based 2D framework Exploring deformation mechanisms in a refractory high entropy alloy (MoNbTaW) Vibration control in bolted joints with locally resonant metamaterials Unveiling self-propelled ascent in granular media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1