Y染色体镶嵌损失的复杂系统研究

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY GeroScience Pub Date : 2024-12-16 DOI:10.1007/s11357-024-01468-7
Xihan Guo, Xueqin Dai
{"title":"Y染色体镶嵌损失的复杂系统研究","authors":"Xihan Guo, Xueqin Dai","doi":"10.1007/s11357-024-01468-7","DOIUrl":null,"url":null,"abstract":"<p>Mosaic loss of Y chromosome (mLOY) is an acquired condition wherein a sizeable proportion of an organ’s cells have lost their Y. Large-scale cohort studies have shown that mLOY is age-dependent and a strong risk factor for all-cause mortality and adverse outcomes of age-related diseases. Emerging multi-omics approaches that combine gene expression, epigenetic and mutational profiling of human LOY cell populations at single-cell levels, and contemporary work in in vitro cell and preclinical mouse models have provided important clues into how mLOY mechanistically contributes to disease onset and progression. Despite these advances, what has been missing is a system-level insight into mLOY. By integrating the most recent advances in wide-ranging aspects of mLOY research, we summarize a unified model to understanding the cause and consequence of mLOY at the molecular, cellular, and organismal levels. This model, referred to as the “Unstable Y Cascade model,” states that (i) the rise and expansion of LOY result from interaction by the inherently unstable Y, germline genetic and epigenetic variants, and numerous cell-intrinsic and external factors; (ii) LOY initiates genomic, epigenomic, and transcriptomic alterations in X and autosomes, thereafter induces a cascade of tissue-specific cellular alterations that contribute locally to the onset and progression of diseases; and (iii) LOY cells exert paracrine effects to non-LOY cells, thereby amplifying LOY-associated pathological signaling cascades to remote non-LOY cells. This new model has implications in the development of therapeutic interventions that could prevent or delay age-related diseases via mitigating mLOY burden.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"6 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complex systems approach to mosaic loss of the Y chromosome\",\"authors\":\"Xihan Guo, Xueqin Dai\",\"doi\":\"10.1007/s11357-024-01468-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mosaic loss of Y chromosome (mLOY) is an acquired condition wherein a sizeable proportion of an organ’s cells have lost their Y. Large-scale cohort studies have shown that mLOY is age-dependent and a strong risk factor for all-cause mortality and adverse outcomes of age-related diseases. Emerging multi-omics approaches that combine gene expression, epigenetic and mutational profiling of human LOY cell populations at single-cell levels, and contemporary work in in vitro cell and preclinical mouse models have provided important clues into how mLOY mechanistically contributes to disease onset and progression. Despite these advances, what has been missing is a system-level insight into mLOY. By integrating the most recent advances in wide-ranging aspects of mLOY research, we summarize a unified model to understanding the cause and consequence of mLOY at the molecular, cellular, and organismal levels. This model, referred to as the “Unstable Y Cascade model,” states that (i) the rise and expansion of LOY result from interaction by the inherently unstable Y, germline genetic and epigenetic variants, and numerous cell-intrinsic and external factors; (ii) LOY initiates genomic, epigenomic, and transcriptomic alterations in X and autosomes, thereafter induces a cascade of tissue-specific cellular alterations that contribute locally to the onset and progression of diseases; and (iii) LOY cells exert paracrine effects to non-LOY cells, thereby amplifying LOY-associated pathological signaling cascades to remote non-LOY cells. This new model has implications in the development of therapeutic interventions that could prevent or delay age-related diseases via mitigating mLOY burden.</p>\",\"PeriodicalId\":12730,\"journal\":{\"name\":\"GeroScience\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeroScience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11357-024-01468-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-024-01468-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大规模队列研究表明,Y 染色体马赛克缺失(mLOY)与年龄有关,是导致全因死亡和老年相关疾病不良后果的一个重要风险因素。新出现的多组学方法在单细胞水平上对人类 LOY 细胞群进行了基因表达、表观遗传和突变分析,而当代在体外细胞和临床前小鼠模型中开展的工作则为了解 mLOY 如何从机理上导致疾病的发生和发展提供了重要线索。尽管取得了这些进展,但对 mLOY 的系统级深入研究仍是空白。通过整合 mLOY 研究各方面的最新进展,我们总结出了一个统一的模型,用于从分子、细胞和机体层面了解 mLOY 的成因和后果。这个模型被称为 "不稳定 Y 级联模型",它指出:(i) LOY 的兴起和扩展是内在不稳定 Y、种系遗传和表观遗传变异以及众多细胞内在和外在因素相互作用的结果;(iii) LOY 细胞对非 LOY 细胞产生旁分泌效应,从而将 LOY 相关的病理信号级联放大到远处的非 LOY 细胞。这一新模型有助于开发治疗干预措施,通过减轻 LOY 负担来预防或延缓与年龄有关的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A complex systems approach to mosaic loss of the Y chromosome

Mosaic loss of Y chromosome (mLOY) is an acquired condition wherein a sizeable proportion of an organ’s cells have lost their Y. Large-scale cohort studies have shown that mLOY is age-dependent and a strong risk factor for all-cause mortality and adverse outcomes of age-related diseases. Emerging multi-omics approaches that combine gene expression, epigenetic and mutational profiling of human LOY cell populations at single-cell levels, and contemporary work in in vitro cell and preclinical mouse models have provided important clues into how mLOY mechanistically contributes to disease onset and progression. Despite these advances, what has been missing is a system-level insight into mLOY. By integrating the most recent advances in wide-ranging aspects of mLOY research, we summarize a unified model to understanding the cause and consequence of mLOY at the molecular, cellular, and organismal levels. This model, referred to as the “Unstable Y Cascade model,” states that (i) the rise and expansion of LOY result from interaction by the inherently unstable Y, germline genetic and epigenetic variants, and numerous cell-intrinsic and external factors; (ii) LOY initiates genomic, epigenomic, and transcriptomic alterations in X and autosomes, thereafter induces a cascade of tissue-specific cellular alterations that contribute locally to the onset and progression of diseases; and (iii) LOY cells exert paracrine effects to non-LOY cells, thereby amplifying LOY-associated pathological signaling cascades to remote non-LOY cells. This new model has implications in the development of therapeutic interventions that could prevent or delay age-related diseases via mitigating mLOY burden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
期刊最新文献
Test of Rapamycin in Aging Dogs (TRIAD): study design and rationale for a prospective, parallel-group, double-masked, randomized, placebo-controlled, multicenter trial of rapamycin in healthy middle-aged dogs from the Dog Aging Project. Adipose chemokine ligand CX3CL1 contributes to maintaining the hippocampal BDNF level, and the effect is attenuated in advanced age Measuring thymic output across the human lifespan: a critical challenge in laboratory medicine A multi-omic single-cell landscape of the aging mouse ovary The role of protective genetic variants in modulating epigenetic aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1