缓存或重新计算:在IaaS云中运行大数据任务的在线成本优化

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2024-12-09 DOI:10.1016/j.jnca.2024.104080
Xiankun Fu, Li Pan, Shijun Liu
{"title":"缓存或重新计算:在IaaS云中运行大数据任务的在线成本优化","authors":"Xiankun Fu, Li Pan, Shijun Liu","doi":"10.1016/j.jnca.2024.104080","DOIUrl":null,"url":null,"abstract":"High computing power and large storage capacity are necessary for running big data tasks, which leads to high infrastructure costs. Infrastructure-as-a-Service (IaaS) clouds can provide configuration environments and computing resources needed for running big data tasks, while saving users from expensive software and hardware infrastructure investments. Many studies show that the cost of computation can be reduced by caching intermediate results and reusing them instead of repeating computations. However, the storage cost incurred by caching a large number of intermediate results over a long period of time may exceed the cost of computation, ultimately leading to an increase in total cost instead. For making optimal caching decisions, future usage profiles for big data tasks are needed, but it is generally very hard to predict them precisely. In this paper, to address this problem, we propose two practical online algorithms, one deterministic and the other randomized, which can determine whether to cache intermediate results to reduce the total cost of big data tasks without requiring any future information. We prove theoretically that the competitive ratio of the proposed deterministic (randomized) algorithm is <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>δ</mml:mi></mml:mrow></mml:mfrac><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mfrac><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi></mml:mrow></mml:mfrac><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> (resp., <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mfrac><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>e</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfrac></mml:math>). Using real-world Wikipedia data as well as synthetic datasets, we verify the effectiveness of our proposed algorithms through a large number of experiments based on the price of Alibaba’s public IaaS cloud products.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"30 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caching or re-computing: Online cost optimization for running big data tasks in IaaS clouds\",\"authors\":\"Xiankun Fu, Li Pan, Shijun Liu\",\"doi\":\"10.1016/j.jnca.2024.104080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High computing power and large storage capacity are necessary for running big data tasks, which leads to high infrastructure costs. Infrastructure-as-a-Service (IaaS) clouds can provide configuration environments and computing resources needed for running big data tasks, while saving users from expensive software and hardware infrastructure investments. Many studies show that the cost of computation can be reduced by caching intermediate results and reusing them instead of repeating computations. However, the storage cost incurred by caching a large number of intermediate results over a long period of time may exceed the cost of computation, ultimately leading to an increase in total cost instead. For making optimal caching decisions, future usage profiles for big data tasks are needed, but it is generally very hard to predict them precisely. In this paper, to address this problem, we propose two practical online algorithms, one deterministic and the other randomized, which can determine whether to cache intermediate results to reduce the total cost of big data tasks without requiring any future information. We prove theoretically that the competitive ratio of the proposed deterministic (randomized) algorithm is <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>δ</mml:mi></mml:mrow></mml:mfrac><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mfrac><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi></mml:mrow></mml:mfrac><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> (resp., <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mfrac><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>e</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfrac></mml:math>). Using real-world Wikipedia data as well as synthetic datasets, we verify the effectiveness of our proposed algorithms through a large number of experiments based on the price of Alibaba’s public IaaS cloud products.\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnca.2024.104080\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104080","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

运行大数据任务需要高计算能力和大存储容量,这导致基础设施成本高昂。基础设施即服务(IaaS)云可以提供运行大数据任务所需的配置环境和计算资源,同时为用户节省昂贵的软件和硬件基础设施投资。许多研究表明,通过缓存中间结果并重复使用它们而不是重复计算,可以降低计算成本。然而,长期缓存大量中间结果所产生的存储成本可能会超过计算成本,最终导致总成本反而增加。要做出最佳缓存决策,需要大数据任务的未来使用情况,但通常很难精确预测。为了解决这个问题,我们在本文中提出了两种实用的在线算法,一种是确定性算法,另一种是随机算法,它们可以在不需要任何未来信息的情况下决定是否缓存中间结果,从而降低大数据任务的总成本。我们从理论上证明了所提出的确定性(随机)算法的竞争比为 min(2-1-ηδ,2-ηβ) (resp., ee-1)。我们使用真实世界的维基百科数据和合成数据集,以阿里巴巴公共 IaaS 云产品的价格为基础,通过大量实验验证了我们提出的算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caching or re-computing: Online cost optimization for running big data tasks in IaaS clouds
High computing power and large storage capacity are necessary for running big data tasks, which leads to high infrastructure costs. Infrastructure-as-a-Service (IaaS) clouds can provide configuration environments and computing resources needed for running big data tasks, while saving users from expensive software and hardware infrastructure investments. Many studies show that the cost of computation can be reduced by caching intermediate results and reusing them instead of repeating computations. However, the storage cost incurred by caching a large number of intermediate results over a long period of time may exceed the cost of computation, ultimately leading to an increase in total cost instead. For making optimal caching decisions, future usage profiles for big data tasks are needed, but it is generally very hard to predict them precisely. In this paper, to address this problem, we propose two practical online algorithms, one deterministic and the other randomized, which can determine whether to cache intermediate results to reduce the total cost of big data tasks without requiring any future information. We prove theoretically that the competitive ratio of the proposed deterministic (randomized) algorithm is min(21ηδ,2ηβ) (resp., ee1). Using real-world Wikipedia data as well as synthetic datasets, we verify the effectiveness of our proposed algorithms through a large number of experiments based on the price of Alibaba’s public IaaS cloud products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
ALB-TP: Adaptive Load Balancing based on Traffic Prediction using GRU-Attention for Software-Defined DCNs On and off the manifold: Generation and Detection of adversarial attacks in IIoT networks Light up that Droid! On the effectiveness of static analysis features against app obfuscation for Android malware detection Clusters in chaos: A deep unsupervised learning paradigm for network anomaly detection Consensus hybrid ensemble machine learning for intrusion detection with explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1