{"title":"SDN中DDoS攻击的全面全面回顾:通过机器学习和深度学习利用检测和缓解","authors":"Dhruv Kalambe, Divyansh Sharma, Pushkar Kadam, Shivangi Surati","doi":"10.1016/j.jnca.2024.104081","DOIUrl":null,"url":null,"abstract":"The traditional architecture of networks in Software Defined Networking (SDN) is divided into three distinct planes to incorporate intelligence into networks. However, this structure has also introduced security threats and challenges across these planes, including the widely recognized Distributed Denial of Service (DDoS) attack. Therefore, it is essential to predict such attacks and their variants at different planes in SDN to maintain seamless network operations. Apart from network based and flow analysis based solutions to detect the attacks; machine learning and deep learning based prediction and mitigation approaches are also explored by the researchers and applied at different planes of software defined networking. Consequently, a detailed analysis of DDoS attacks and a review that explores DDoS attacks in SDN along with their learning based prediction/mitigation strategies are required to be studied and presented in detail. This paper primarily aims to investigate and analyze DDoS attacks on each plane of SDN and to study as well as compare machine learning, advanced federated learning and deep learning approaches to predict these attacks. The real world case studies are also explored to compare the analysis. In addition, low-rate DDoS attacks and novel research directions are discussed that can further be utilized by SDN experts and researchers to confront the effects by DDoS attacks on SDN.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"252 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive plane-wise review of DDoS attacks in SDN: Leveraging detection and mitigation through machine learning and deep learning\",\"authors\":\"Dhruv Kalambe, Divyansh Sharma, Pushkar Kadam, Shivangi Surati\",\"doi\":\"10.1016/j.jnca.2024.104081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional architecture of networks in Software Defined Networking (SDN) is divided into three distinct planes to incorporate intelligence into networks. However, this structure has also introduced security threats and challenges across these planes, including the widely recognized Distributed Denial of Service (DDoS) attack. Therefore, it is essential to predict such attacks and their variants at different planes in SDN to maintain seamless network operations. Apart from network based and flow analysis based solutions to detect the attacks; machine learning and deep learning based prediction and mitigation approaches are also explored by the researchers and applied at different planes of software defined networking. Consequently, a detailed analysis of DDoS attacks and a review that explores DDoS attacks in SDN along with their learning based prediction/mitigation strategies are required to be studied and presented in detail. This paper primarily aims to investigate and analyze DDoS attacks on each plane of SDN and to study as well as compare machine learning, advanced federated learning and deep learning approaches to predict these attacks. The real world case studies are also explored to compare the analysis. In addition, low-rate DDoS attacks and novel research directions are discussed that can further be utilized by SDN experts and researchers to confront the effects by DDoS attacks on SDN.\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnca.2024.104081\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104081","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A comprehensive plane-wise review of DDoS attacks in SDN: Leveraging detection and mitigation through machine learning and deep learning
The traditional architecture of networks in Software Defined Networking (SDN) is divided into three distinct planes to incorporate intelligence into networks. However, this structure has also introduced security threats and challenges across these planes, including the widely recognized Distributed Denial of Service (DDoS) attack. Therefore, it is essential to predict such attacks and their variants at different planes in SDN to maintain seamless network operations. Apart from network based and flow analysis based solutions to detect the attacks; machine learning and deep learning based prediction and mitigation approaches are also explored by the researchers and applied at different planes of software defined networking. Consequently, a detailed analysis of DDoS attacks and a review that explores DDoS attacks in SDN along with their learning based prediction/mitigation strategies are required to be studied and presented in detail. This paper primarily aims to investigate and analyze DDoS attacks on each plane of SDN and to study as well as compare machine learning, advanced federated learning and deep learning approaches to predict these attacks. The real world case studies are also explored to compare the analysis. In addition, low-rate DDoS attacks and novel research directions are discussed that can further be utilized by SDN experts and researchers to confront the effects by DDoS attacks on SDN.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.