{"title":"标签感知学习增强无监督跨域谣言检测","authors":"Hongyan Ran, Xiaohong Li, Zhichang Zhang","doi":"10.1016/j.jnca.2024.104084","DOIUrl":null,"url":null,"abstract":"Recently, massive research has achieved significant development in improving the performance of rumor detection. However, identifying rumors in an invisible domain is still an elusive challenge. To address this issue, we propose an unsupervised cross-domain rumor detection model that enhances contrastive learning and cross-attention by label-aware learning to alleviate the domain shift. The model performs cross-domain feature alignment and enforces target samples to align with the corresponding prototypes of a given source domain. Moreover, we use a cross-attention mechanism on a pair of source data and target data with the same labels to learn domain-invariant representations. Because the samples in a domain pair tend to express similar semantic patterns, especially on the people’s attitudes (e.g., supporting or denying) towards the same category of rumors. In addition, we add a label-aware learning module as an enhancement component to learn the correlations between labels and instances during training and generate a better label distribution to replace the original one-hot label vector to guide the model training. At the same time, we use the label representation learned by the label learning module to guide the production of pseudo-label for the target samples. We conduct experiments on four groups of cross-domain datasets and show that our proposed model achieves state-of-the-art performance.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"117 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-aware learning to enhance unsupervised cross-domain rumor detection\",\"authors\":\"Hongyan Ran, Xiaohong Li, Zhichang Zhang\",\"doi\":\"10.1016/j.jnca.2024.104084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, massive research has achieved significant development in improving the performance of rumor detection. However, identifying rumors in an invisible domain is still an elusive challenge. To address this issue, we propose an unsupervised cross-domain rumor detection model that enhances contrastive learning and cross-attention by label-aware learning to alleviate the domain shift. The model performs cross-domain feature alignment and enforces target samples to align with the corresponding prototypes of a given source domain. Moreover, we use a cross-attention mechanism on a pair of source data and target data with the same labels to learn domain-invariant representations. Because the samples in a domain pair tend to express similar semantic patterns, especially on the people’s attitudes (e.g., supporting or denying) towards the same category of rumors. In addition, we add a label-aware learning module as an enhancement component to learn the correlations between labels and instances during training and generate a better label distribution to replace the original one-hot label vector to guide the model training. At the same time, we use the label representation learned by the label learning module to guide the production of pseudo-label for the target samples. We conduct experiments on four groups of cross-domain datasets and show that our proposed model achieves state-of-the-art performance.\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnca.2024.104084\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104084","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Label-aware learning to enhance unsupervised cross-domain rumor detection
Recently, massive research has achieved significant development in improving the performance of rumor detection. However, identifying rumors in an invisible domain is still an elusive challenge. To address this issue, we propose an unsupervised cross-domain rumor detection model that enhances contrastive learning and cross-attention by label-aware learning to alleviate the domain shift. The model performs cross-domain feature alignment and enforces target samples to align with the corresponding prototypes of a given source domain. Moreover, we use a cross-attention mechanism on a pair of source data and target data with the same labels to learn domain-invariant representations. Because the samples in a domain pair tend to express similar semantic patterns, especially on the people’s attitudes (e.g., supporting or denying) towards the same category of rumors. In addition, we add a label-aware learning module as an enhancement component to learn the correlations between labels and instances during training and generate a better label distribution to replace the original one-hot label vector to guide the model training. At the same time, we use the label representation learned by the label learning module to guide the production of pseudo-label for the target samples. We conduct experiments on four groups of cross-domain datasets and show that our proposed model achieves state-of-the-art performance.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.