{"title":"我们有多高?利用Sentinel-1 SAR和Sentinel-2 MSI时间序列估算10 m的大尺度建筑高度","authors":"Ritu Yadav, Andrea Nascetti, Yifang Ban","doi":"10.1016/j.rse.2024.114556","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate building height estimation is essential to support urbanization monitoring, environmental impact analysis and sustainable urban planning. However, conducting large-scale building height estimation remains a significant challenge. While deep learning (DL) has proven effective for large-scale mapping tasks, there is a lack of advanced DL models specifically tailored for height estimation, particularly when using open-source Earth observation data. In this study, we propose T-SwinUNet, an advanced DL model for large-scale building height estimation leveraging Sentinel-1 SAR and Sentinel-2 multispectral time series. T-SwinUNet model contains a feature extractor with local/global feature comprehension capabilities, a temporal attention module to learn the correlation between constant and variable features of building objects over time and an efficient multitask decoder to predict building height at 10 m spatial resolution. The model is trained and evaluated on data from the Netherlands, Switzerland, Estonia, and Germany, and its generalizability is evaluated on an out-of-distribution (OOD) test set from ten additional cities from other European countries. Our study incorporates extensive model evaluations, ablation experiments, and comparisons with established models. T-SwinUNet predicts building height with a Root Mean Square Error (RMSE) of 1.89 m, outperforming state-of-the-art models at 10 m spatial resolution. Its strong generalization to the OOD test set (RMSE of 3.2 m) underscores its potential for low-cost building height estimation across Europe, with future scalability to other regions. Furthermore, the assessment at 100 m resolution reveals that T-SwinUNet (0.29 m RMSE, 0.75 <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) also outperformed the global building height product GHSL-Built-H R2023A product(0.56 m RMSE and 0.37 <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>). Our implementation is available at: <span><span>https://github.com/RituYadav92/Building-Height-Estimation</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"318 ","pages":"Article 114556"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How high are we? Large-scale building height estimation at 10 m using Sentinel-1 SAR and Sentinel-2 MSI time series\",\"authors\":\"Ritu Yadav, Andrea Nascetti, Yifang Ban\",\"doi\":\"10.1016/j.rse.2024.114556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate building height estimation is essential to support urbanization monitoring, environmental impact analysis and sustainable urban planning. However, conducting large-scale building height estimation remains a significant challenge. While deep learning (DL) has proven effective for large-scale mapping tasks, there is a lack of advanced DL models specifically tailored for height estimation, particularly when using open-source Earth observation data. In this study, we propose T-SwinUNet, an advanced DL model for large-scale building height estimation leveraging Sentinel-1 SAR and Sentinel-2 multispectral time series. T-SwinUNet model contains a feature extractor with local/global feature comprehension capabilities, a temporal attention module to learn the correlation between constant and variable features of building objects over time and an efficient multitask decoder to predict building height at 10 m spatial resolution. The model is trained and evaluated on data from the Netherlands, Switzerland, Estonia, and Germany, and its generalizability is evaluated on an out-of-distribution (OOD) test set from ten additional cities from other European countries. Our study incorporates extensive model evaluations, ablation experiments, and comparisons with established models. T-SwinUNet predicts building height with a Root Mean Square Error (RMSE) of 1.89 m, outperforming state-of-the-art models at 10 m spatial resolution. Its strong generalization to the OOD test set (RMSE of 3.2 m) underscores its potential for low-cost building height estimation across Europe, with future scalability to other regions. Furthermore, the assessment at 100 m resolution reveals that T-SwinUNet (0.29 m RMSE, 0.75 <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) also outperformed the global building height product GHSL-Built-H R2023A product(0.56 m RMSE and 0.37 <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>). Our implementation is available at: <span><span>https://github.com/RituYadav92/Building-Height-Estimation</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"318 \",\"pages\":\"Article 114556\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724005820\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005820","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
How high are we? Large-scale building height estimation at 10 m using Sentinel-1 SAR and Sentinel-2 MSI time series
Accurate building height estimation is essential to support urbanization monitoring, environmental impact analysis and sustainable urban planning. However, conducting large-scale building height estimation remains a significant challenge. While deep learning (DL) has proven effective for large-scale mapping tasks, there is a lack of advanced DL models specifically tailored for height estimation, particularly when using open-source Earth observation data. In this study, we propose T-SwinUNet, an advanced DL model for large-scale building height estimation leveraging Sentinel-1 SAR and Sentinel-2 multispectral time series. T-SwinUNet model contains a feature extractor with local/global feature comprehension capabilities, a temporal attention module to learn the correlation between constant and variable features of building objects over time and an efficient multitask decoder to predict building height at 10 m spatial resolution. The model is trained and evaluated on data from the Netherlands, Switzerland, Estonia, and Germany, and its generalizability is evaluated on an out-of-distribution (OOD) test set from ten additional cities from other European countries. Our study incorporates extensive model evaluations, ablation experiments, and comparisons with established models. T-SwinUNet predicts building height with a Root Mean Square Error (RMSE) of 1.89 m, outperforming state-of-the-art models at 10 m spatial resolution. Its strong generalization to the OOD test set (RMSE of 3.2 m) underscores its potential for low-cost building height estimation across Europe, with future scalability to other regions. Furthermore, the assessment at 100 m resolution reveals that T-SwinUNet (0.29 m RMSE, 0.75 ) also outperformed the global building height product GHSL-Built-H R2023A product(0.56 m RMSE and 0.37 ). Our implementation is available at: https://github.com/RituYadav92/Building-Height-Estimation.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.