确保 Qudit 稳健性的量子断言方案

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2024-11-04 DOI:10.1109/LCA.2024.3483840
Navnil Choudhury;Chao Lu;Kanad Basu
{"title":"确保 Qudit 稳健性的量子断言方案","authors":"Navnil Choudhury;Chao Lu;Kanad Basu","doi":"10.1109/LCA.2024.3483840","DOIUrl":null,"url":null,"abstract":"Noisy Intermediate-Scale Quantum (NISQ) computers are impeded by constraints such as limited qubit count and susceptibility to noise, hindering the progression towards fault-tolerant quantum computing for intricate and practical applications. To augment the computational capabilities of quantum computers, research is gravitating towards qudits featuring more than two energy levels. This paper presents the inaugural examination of the repercussions of errors in qudit circuits. Subsequently, we introduce an innovative qudit-based assertion framework aimed at automatically detecting and reporting errors and warnings during the quantum circuit design and compilation process. Our proposed framework, when subjected to evaluation on existing quantum computing platforms, can detect both new and existing bugs with up to 100% coverage of the bugs mentioned in this paper.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"247-250"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Assertion Scheme for Assuring Qudit Robustness\",\"authors\":\"Navnil Choudhury;Chao Lu;Kanad Basu\",\"doi\":\"10.1109/LCA.2024.3483840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noisy Intermediate-Scale Quantum (NISQ) computers are impeded by constraints such as limited qubit count and susceptibility to noise, hindering the progression towards fault-tolerant quantum computing for intricate and practical applications. To augment the computational capabilities of quantum computers, research is gravitating towards qudits featuring more than two energy levels. This paper presents the inaugural examination of the repercussions of errors in qudit circuits. Subsequently, we introduce an innovative qudit-based assertion framework aimed at automatically detecting and reporting errors and warnings during the quantum circuit design and compilation process. Our proposed framework, when subjected to evaluation on existing quantum computing platforms, can detect both new and existing bugs with up to 100% coverage of the bugs mentioned in this paper.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 2\",\"pages\":\"247-250\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742470/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742470/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

有噪声的中等规模量子(NISQ)计算机受到诸如有限的量子比特数和对噪声的易感性等限制的阻碍,阻碍了向复杂和实际应用的容错量子计算的发展。为了增强量子计算机的计算能力,研究正趋向于具有两个以上能级的量子。本文提出了在量子电路误差的影响的初步检查。随后,我们引入了一个创新的基于量子比特的断言框架,旨在自动检测和报告量子电路设计和编译过程中的错误和警告。我们提出的框架在现有的量子计算平台上进行评估时,可以检测到新的和现有的错误,并且对本文提到的错误的覆盖率高达100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Assertion Scheme for Assuring Qudit Robustness
Noisy Intermediate-Scale Quantum (NISQ) computers are impeded by constraints such as limited qubit count and susceptibility to noise, hindering the progression towards fault-tolerant quantum computing for intricate and practical applications. To augment the computational capabilities of quantum computers, research is gravitating towards qudits featuring more than two energy levels. This paper presents the inaugural examination of the repercussions of errors in qudit circuits. Subsequently, we introduce an innovative qudit-based assertion framework aimed at automatically detecting and reporting errors and warnings during the quantum circuit design and compilation process. Our proposed framework, when subjected to evaluation on existing quantum computing platforms, can detect both new and existing bugs with up to 100% coverage of the bugs mentioned in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
2024 Reviewers List High-Performance Winograd Based Accelerator Architecture for Convolutional Neural Network PINSim: A Processing In- and Near-Sensor Simulator to Model Intelligent Vision Sensors ZoneBuffer: An Efficient Buffer Management Scheme for ZNS SSDs Electra: Eliminating the Ineffectual Computations on Bitmap Compressed Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1