多目标进化框架下的高阶定向群落检测

Jing Xiao;Jing Cao;Xiao-Ke Xu
{"title":"多目标进化框架下的高阶定向群落检测","authors":"Jing Xiao;Jing Cao;Xiao-Ke Xu","doi":"10.1109/TAI.2024.3436659","DOIUrl":null,"url":null,"abstract":"Higher-order community detection in real-life networks has recently gained significant attention, because motif-based communities reflect not only higher-order mesoscale structures but also functional characteristics. However, motif-based communities detected by existing methods for directed networks often disregard edge directionality (nonreciprocal directional arcs), so they typically fail to comprehensively reveal intrinsic characteristics of higher-order topology and information flow. To address this issue, first, we model higher-order directed community detection as a biobjective optimization problem, aiming to provide high-quality and diverse compromise partitions that capture both characteristics. Second, we introduce a multiobjective genetic algorithm based on motif density and information flow (MOGA-MI) to approximate the Pareto optimal higher-order directed community partitions. On the one hand, an arc-and-motif neighbor-based genetic generator (AMN-GA) is developed to generate high-quality and diverse offspring individuals; on the other hand, a higher-order directed neighbor community modification (HD-NCM) operation is designed to further improve generated partitions by modifying easily confused nodes into more appropriate motif-neighbor communities. Finally, experimental results demonstrate that the proposed MOGA-MI outperforms state-of-the-art algorithms in terms of higher-order topology and information flow indicators while providing more diverse community information.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6536-6550"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-Order Directed Community Detection by A Multiobjective Evolutionary Framework\",\"authors\":\"Jing Xiao;Jing Cao;Xiao-Ke Xu\",\"doi\":\"10.1109/TAI.2024.3436659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher-order community detection in real-life networks has recently gained significant attention, because motif-based communities reflect not only higher-order mesoscale structures but also functional characteristics. However, motif-based communities detected by existing methods for directed networks often disregard edge directionality (nonreciprocal directional arcs), so they typically fail to comprehensively reveal intrinsic characteristics of higher-order topology and information flow. To address this issue, first, we model higher-order directed community detection as a biobjective optimization problem, aiming to provide high-quality and diverse compromise partitions that capture both characteristics. Second, we introduce a multiobjective genetic algorithm based on motif density and information flow (MOGA-MI) to approximate the Pareto optimal higher-order directed community partitions. On the one hand, an arc-and-motif neighbor-based genetic generator (AMN-GA) is developed to generate high-quality and diverse offspring individuals; on the other hand, a higher-order directed neighbor community modification (HD-NCM) operation is designed to further improve generated partitions by modifying easily confused nodes into more appropriate motif-neighbor communities. Finally, experimental results demonstrate that the proposed MOGA-MI outperforms state-of-the-art algorithms in terms of higher-order topology and information flow indicators while providing more diverse community information.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 12\",\"pages\":\"6536-6550\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10620004/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10620004/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Higher-Order Directed Community Detection by A Multiobjective Evolutionary Framework
Higher-order community detection in real-life networks has recently gained significant attention, because motif-based communities reflect not only higher-order mesoscale structures but also functional characteristics. However, motif-based communities detected by existing methods for directed networks often disregard edge directionality (nonreciprocal directional arcs), so they typically fail to comprehensively reveal intrinsic characteristics of higher-order topology and information flow. To address this issue, first, we model higher-order directed community detection as a biobjective optimization problem, aiming to provide high-quality and diverse compromise partitions that capture both characteristics. Second, we introduce a multiobjective genetic algorithm based on motif density and information flow (MOGA-MI) to approximate the Pareto optimal higher-order directed community partitions. On the one hand, an arc-and-motif neighbor-based genetic generator (AMN-GA) is developed to generate high-quality and diverse offspring individuals; on the other hand, a higher-order directed neighbor community modification (HD-NCM) operation is designed to further improve generated partitions by modifying easily confused nodes into more appropriate motif-neighbor communities. Finally, experimental results demonstrate that the proposed MOGA-MI outperforms state-of-the-art algorithms in terms of higher-order topology and information flow indicators while providing more diverse community information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1