利用可变形注意力进行息肉分割的边界细化网络

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-11-18 DOI:10.1109/LSP.2024.3501283
Zijian Li;Zhiyong Yang;Wangsheng Wu;Zihang Guo;Dongdong Zhu
{"title":"利用可变形注意力进行息肉分割的边界细化网络","authors":"Zijian Li;Zhiyong Yang;Wangsheng Wu;Zihang Guo;Dongdong Zhu","doi":"10.1109/LSP.2024.3501283","DOIUrl":null,"url":null,"abstract":"Early and accurate polyp segmentation is crucial for the diagnosis and treatment of colorectal cancer. However, polyp segmentation faces many challenges: different polyp sizes, complex shapes, and ambiguous intestinal wall boundaries. To solve these problems, we propose a novel polyp segmentation network named DeformSegNet. Specifically, we first introduce a polyp perception module (PPM), which combines the dynamic multi-kernel spatial selection network (DMS-Net) and a transformer encoder to effectively locate polyps of different sizes. Next, we design a deformation-aware separable module (DSM), which consists of deformable attention that adaptively adjusts the sampling position, enabling the network to adapt to complex and diverse polyp boundaries. Finally, a cross-attention aggregation module (CAAM) effectively retains low-level features, further enhancing the boundary features and suppressing false positives. DeformSegNet achieves competitive segmentation accuracy on five polyp datasets, demonstrating excellent learning and generalization capabilities.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"121-125"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary Refinement Network for Polyp Segmentation With Deformable Attention\",\"authors\":\"Zijian Li;Zhiyong Yang;Wangsheng Wu;Zihang Guo;Dongdong Zhu\",\"doi\":\"10.1109/LSP.2024.3501283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early and accurate polyp segmentation is crucial for the diagnosis and treatment of colorectal cancer. However, polyp segmentation faces many challenges: different polyp sizes, complex shapes, and ambiguous intestinal wall boundaries. To solve these problems, we propose a novel polyp segmentation network named DeformSegNet. Specifically, we first introduce a polyp perception module (PPM), which combines the dynamic multi-kernel spatial selection network (DMS-Net) and a transformer encoder to effectively locate polyps of different sizes. Next, we design a deformation-aware separable module (DSM), which consists of deformable attention that adaptively adjusts the sampling position, enabling the network to adapt to complex and diverse polyp boundaries. Finally, a cross-attention aggregation module (CAAM) effectively retains low-level features, further enhancing the boundary features and suppressing false positives. DeformSegNet achieves competitive segmentation accuracy on five polyp datasets, demonstrating excellent learning and generalization capabilities.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"121-125\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756515/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10756515/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

早期准确的息肉分割对于结直肠癌的诊断和治疗至关重要。然而,息肉分割面临许多挑战:息肉大小不一、形状复杂、肠壁边界模糊。为了解决这些问题,我们提出了一种名为 DeformSegNet 的新型息肉分割网络。 具体来说,我们首先引入了息肉感知模块(PPM),该模块结合了动态多核空间选择网络(DMS-Net)和变压器编码器,可有效定位不同大小的息肉。接着,我们设计了变形感知可分离模块(DSM),该模块由可变形注意力组成,可自适应地调整采样位置,使网络能够适应复杂多样的息肉边界。最后,交叉注意力聚合模块(CAAM)能有效保留低级特征,进一步增强边界特征并抑制误报。DeformSegNet 在五个息肉数据集上实现了极具竞争力的分割准确率,展示了卓越的学习和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boundary Refinement Network for Polyp Segmentation With Deformable Attention
Early and accurate polyp segmentation is crucial for the diagnosis and treatment of colorectal cancer. However, polyp segmentation faces many challenges: different polyp sizes, complex shapes, and ambiguous intestinal wall boundaries. To solve these problems, we propose a novel polyp segmentation network named DeformSegNet. Specifically, we first introduce a polyp perception module (PPM), which combines the dynamic multi-kernel spatial selection network (DMS-Net) and a transformer encoder to effectively locate polyps of different sizes. Next, we design a deformation-aware separable module (DSM), which consists of deformable attention that adaptively adjusts the sampling position, enabling the network to adapt to complex and diverse polyp boundaries. Finally, a cross-attention aggregation module (CAAM) effectively retains low-level features, further enhancing the boundary features and suppressing false positives. DeformSegNet achieves competitive segmentation accuracy on five polyp datasets, demonstrating excellent learning and generalization capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1