手性驱动形成具有大双折射†的杂合氰尿酸盐

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-11-20 DOI:10.1039/D4CE01123F
Yue Zhao, Chun-Li Hu, Peng-Fei Chen, Ming-Zhi Zhang and Jiang-Gao Mao
{"title":"手性驱动形成具有大双折射†的杂合氰尿酸盐","authors":"Yue Zhao, Chun-Li Hu, Peng-Fei Chen, Ming-Zhi Zhang and Jiang-Gao Mao","doi":"10.1039/D4CE01123F","DOIUrl":null,"url":null,"abstract":"<p >Ultraviolet (UV) birefringent crystals have important applications in polarizers, optical isolators and optical information processing. Crystals with large birefringence can enhance the modulation ability of light and realize the miniaturization of devices. However, the birefringence of cyanurates is often limited by the large dihedral angles between anionic groups. In this work, a chiral-driven approach is proposed for the first time to construct cyanurates with large birefringence. We combined racemic or chiral α-methylbenzylamine (α-MBA) molecules with a π-conjugated cyanurate group (CY), which led to the isolation of three organic hybrid cyanurates with wide band gaps &gt;5.10 eV, namely, <em>rac</em>-α-MBACY, <em>R</em>-α-MBACY, and <em>S</em>-α-MBACY. Notably, the presence of chirality leads to a significant reduction of the dihedral angle between the α-MBA cation and (H<small><sub>2</sub></small>C<small><sub>3</sub></small>N<small><sub>3</sub></small>O<small><sub>3</sub></small>)<small><sup>−</sup></small> anion and a threefold increase in birefringence from 0.113@546 nm to 0.344@546 nm and 0.338@546 nm. The birefringence values of <em>R</em>-α-MBACY and <em>S</em>-α-MBACY exceed those of most of the cyanurates and commercial crystals, indicating their potential as UV birefringent crystals. This work provides new insights into the design and syntheses of UV birefringent materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 1","pages":" 30-37"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral-driven formation of hybrid cyanurates with large birefringence†\",\"authors\":\"Yue Zhao, Chun-Li Hu, Peng-Fei Chen, Ming-Zhi Zhang and Jiang-Gao Mao\",\"doi\":\"10.1039/D4CE01123F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultraviolet (UV) birefringent crystals have important applications in polarizers, optical isolators and optical information processing. Crystals with large birefringence can enhance the modulation ability of light and realize the miniaturization of devices. However, the birefringence of cyanurates is often limited by the large dihedral angles between anionic groups. In this work, a chiral-driven approach is proposed for the first time to construct cyanurates with large birefringence. We combined racemic or chiral α-methylbenzylamine (α-MBA) molecules with a π-conjugated cyanurate group (CY), which led to the isolation of three organic hybrid cyanurates with wide band gaps &gt;5.10 eV, namely, <em>rac</em>-α-MBACY, <em>R</em>-α-MBACY, and <em>S</em>-α-MBACY. Notably, the presence of chirality leads to a significant reduction of the dihedral angle between the α-MBA cation and (H<small><sub>2</sub></small>C<small><sub>3</sub></small>N<small><sub>3</sub></small>O<small><sub>3</sub></small>)<small><sup>−</sup></small> anion and a threefold increase in birefringence from 0.113@546 nm to 0.344@546 nm and 0.338@546 nm. The birefringence values of <em>R</em>-α-MBACY and <em>S</em>-α-MBACY exceed those of most of the cyanurates and commercial crystals, indicating their potential as UV birefringent crystals. This work provides new insights into the design and syntheses of UV birefringent materials.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 1\",\"pages\":\" 30-37\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01123f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01123f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chiral-driven formation of hybrid cyanurates with large birefringence†

Ultraviolet (UV) birefringent crystals have important applications in polarizers, optical isolators and optical information processing. Crystals with large birefringence can enhance the modulation ability of light and realize the miniaturization of devices. However, the birefringence of cyanurates is often limited by the large dihedral angles between anionic groups. In this work, a chiral-driven approach is proposed for the first time to construct cyanurates with large birefringence. We combined racemic or chiral α-methylbenzylamine (α-MBA) molecules with a π-conjugated cyanurate group (CY), which led to the isolation of three organic hybrid cyanurates with wide band gaps >5.10 eV, namely, rac-α-MBACY, R-α-MBACY, and S-α-MBACY. Notably, the presence of chirality leads to a significant reduction of the dihedral angle between the α-MBA cation and (H2C3N3O3) anion and a threefold increase in birefringence from 0.113@546 nm to 0.344@546 nm and 0.338@546 nm. The birefringence values of R-α-MBACY and S-α-MBACY exceed those of most of the cyanurates and commercial crystals, indicating their potential as UV birefringent crystals. This work provides new insights into the design and syntheses of UV birefringent materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Crystal growth of calcium oxalate mono- and dihydrate under laminar flow in microfluidic devices† Back cover Properties of the ADN/ANTA cocrystal based on theoretical simulation Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1