可变工作条件下基于 NiMoS@NiCo-LDH 复合材料的柔性混合电容器†。

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-11-15 DOI:10.1039/D4CE00760C
Qi He, Wei Jia, Xiang Wu and Jinghai Liu
{"title":"可变工作条件下基于 NiMoS@NiCo-LDH 复合材料的柔性混合电容器†。","authors":"Qi He, Wei Jia, Xiang Wu and Jinghai Liu","doi":"10.1039/D4CE00760C","DOIUrl":null,"url":null,"abstract":"<p >It is well known that the morphology and structure of electrode materials seriously affect the whole performance of devices. Therefore, transition metal sulfides are desirable cathode materials for supercapacitors due to their high conductivity and rich redox active sites. However, the low energy density restricts their large-scale application. Herein, we design NiMoS@NiCo-LDH core–shell structures through facile synthesis routes. The unique structures relieve volume expansion of the electrode materials during charging/discharging and promote the redox reaction. The as-fabricated products deliver a specific capacity of 1456 C g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>. A flexible device based on the obtained cathode provides an energy density of 80.21 W h kg<small><sup>−1</sup></small> at a power density of 2698.65 W kg<small><sup>−1</sup></small>. It can maintain 85% of its initial capacity after cycling 10 000 times. Furthermore, they still work stably at extreme temperatures ranging from 25 to −20 °C. The asymmetric supercapacitor (ASC) also presents excellent mechanical durability and stability at different bending angles.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 1","pages":" 55-63"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible hybrid capacitors based on NiMoS@NiCo-LDH composites under variable work conditions†\",\"authors\":\"Qi He, Wei Jia, Xiang Wu and Jinghai Liu\",\"doi\":\"10.1039/D4CE00760C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >It is well known that the morphology and structure of electrode materials seriously affect the whole performance of devices. Therefore, transition metal sulfides are desirable cathode materials for supercapacitors due to their high conductivity and rich redox active sites. However, the low energy density restricts their large-scale application. Herein, we design NiMoS@NiCo-LDH core–shell structures through facile synthesis routes. The unique structures relieve volume expansion of the electrode materials during charging/discharging and promote the redox reaction. The as-fabricated products deliver a specific capacity of 1456 C g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>. A flexible device based on the obtained cathode provides an energy density of 80.21 W h kg<small><sup>−1</sup></small> at a power density of 2698.65 W kg<small><sup>−1</sup></small>. It can maintain 85% of its initial capacity after cycling 10 000 times. Furthermore, they still work stably at extreme temperatures ranging from 25 to −20 °C. The asymmetric supercapacitor (ASC) also presents excellent mechanical durability and stability at different bending angles.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 1\",\"pages\":\" 55-63\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00760c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00760c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible hybrid capacitors based on NiMoS@NiCo-LDH composites under variable work conditions†

It is well known that the morphology and structure of electrode materials seriously affect the whole performance of devices. Therefore, transition metal sulfides are desirable cathode materials for supercapacitors due to their high conductivity and rich redox active sites. However, the low energy density restricts their large-scale application. Herein, we design NiMoS@NiCo-LDH core–shell structures through facile synthesis routes. The unique structures relieve volume expansion of the electrode materials during charging/discharging and promote the redox reaction. The as-fabricated products deliver a specific capacity of 1456 C g−1 at 1 A g−1. A flexible device based on the obtained cathode provides an energy density of 80.21 W h kg−1 at a power density of 2698.65 W kg−1. It can maintain 85% of its initial capacity after cycling 10 000 times. Furthermore, they still work stably at extreme temperatures ranging from 25 to −20 °C. The asymmetric supercapacitor (ASC) also presents excellent mechanical durability and stability at different bending angles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Crystal growth of calcium oxalate mono- and dihydrate under laminar flow in microfluidic devices† Back cover Properties of the ADN/ANTA cocrystal based on theoretical simulation Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1