酸性矿井排水中与随机和确定性组装过程有关的微生物群落生态特征。

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-31 Epub Date: 2024-12-16 DOI:10.1128/aem.01028-24
Zhenghua Liu, Chengying Jiang, Zhuzhong Yin, Ibrahim Ahmed Ibrahim, Teng Zhang, Jing Wen, Lei Zhou, Guoping Jiang, Liangzhi Li, Zhendong Yang, Ye Huang, Zhaoyue Yang, Yabing Gu, Delong Meng, Huaqun Yin
{"title":"酸性矿井排水中与随机和确定性组装过程有关的微生物群落生态特征。","authors":"Zhenghua Liu, Chengying Jiang, Zhuzhong Yin, Ibrahim Ahmed Ibrahim, Teng Zhang, Jing Wen, Lei Zhou, Guoping Jiang, Liangzhi Li, Zhendong Yang, Ye Huang, Zhaoyue Yang, Yabing Gu, Delong Meng, Huaqun Yin","doi":"10.1128/aem.01028-24","DOIUrl":null,"url":null,"abstract":"<p><p>Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (<i>r</i> = -0.518, <i>P</i> = 0.007) and dissolved oxygen (<i>r</i> = 0.471, <i>P</i> = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments.</p><p><strong>Importance: </strong>Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0102824"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784436/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage.\",\"authors\":\"Zhenghua Liu, Chengying Jiang, Zhuzhong Yin, Ibrahim Ahmed Ibrahim, Teng Zhang, Jing Wen, Lei Zhou, Guoping Jiang, Liangzhi Li, Zhendong Yang, Ye Huang, Zhaoyue Yang, Yabing Gu, Delong Meng, Huaqun Yin\",\"doi\":\"10.1128/aem.01028-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (<i>r</i> = -0.518, <i>P</i> = 0.007) and dissolved oxygen (<i>r</i> = 0.471, <i>P</i> = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments.</p><p><strong>Importance: </strong>Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":\" \",\"pages\":\"e0102824\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.01028-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01028-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生态过程极大地塑造了微生物群落的组合,但驱动因素尚不清楚。本文收集了全球酸性矿井水微生物群落的宏基因组数据,从物种生态位、相互作用模式、基因功能和病毒感染等方面探讨了酸性矿井水微生物群落与随机和确定性过程相关的生态特征。结果表明,分散限制(DL)(48.5%~93.5%)在AMD微生物群落的系统发育bin组装中占主导地位,其次是均匀选择(HoS)(3.1%~39.2%)、异质选择(HeS)(1.4%~22.2%)和漂移(DR)(0.2%~2.7%)。温度(r = -0.518, P = 0.007)和溶解氧(r = 0.471, P = 0.015)对扩散限制的优势过程有显著影响。网络稳定性与扩散限制的相对重要性呈显著负相关,而与选择过程呈正相关,表明网络性质的变化可能受到生态过程的调节。此外,我们发现生态过程主要与能量产生和转化(C)以及氨基酸运输和代谢(E)的基因功能有关。同时,我们的研究结果表明,参与砷抗性的原病毒和病毒基因的数量与生态漂变在系统发育bin组装中的相对重要性呈负相关,这表明病毒感染可能会削弱生态漂变。综上所述,这些结果强调了生态过程在多个层面上与生态特征相关,为研究极酸性环境下微生物群落的组装提供了新的视角。重要性:揭示驱动群落聚集的力量是微生物生态学的核心问题,但生态约束如何施加随机性和决定论仍然未知。本研究揭示了生态过程与物种生态位位置、相互作用模式、微生物代谢和病毒感染的关系,为极端环境下的群落组装提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage.

Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (r = -0.518, P = 0.007) and dissolved oxygen (r = 0.471, P = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments.

Importance: Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Postdocs should receive relocation benefits from the universities that hire them. Systematic analysis of the glucose-PTS in Streptococcus sanguinis highlighted its importance in central metabolism and bacterial fitness. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1