液相色谱-串联质谱法定量测定人血浆和血液中∆9-四氢大麻酚(THC)、11-OH-THC、THC- cooh、六氢大麻酚和大麻二酚。

IF 2.3 3区 医学 Q3 CHEMISTRY, ANALYTICAL Journal of analytical toxicology Pub Date : 2024-12-05 DOI:10.1093/jat/bkae094
Marion Pavlic, Carolin Innerhofer, Florian Pitterl
{"title":"液相色谱-串联质谱法定量测定人血浆和血液中∆9-四氢大麻酚(THC)、11-OH-THC、THC- cooh、六氢大麻酚和大麻二酚。","authors":"Marion Pavlic, Carolin Innerhofer, Florian Pitterl","doi":"10.1093/jat/bkae094","DOIUrl":null,"url":null,"abstract":"<p><p>Ongoing legalization of cannabis for recreational use contributes to increasing numbers not only of incidents of driving under the influence, but within all forensic fields. In addition, newly emerging cannabinoids such as hexahydrocannabinol (HHC) and the increasing use of cannabidiol (CBD) products have to be addressed. The aims of this study were first to extend laboratory analysis capacity for the \"established\" cannabinoid ∆9-tetrahydrocannabinol (THC) and its metabolites 11-OH-THC and THC-COOH in human plasma/blood, and second to develop analytical procedures concerning HHC and CBD. An LC-MS/MS method based on the available (low-end) instrumentation was used. Samples (250 µL) were prepared by protein precipitation and solid phase extraction. Chromatographic separation was achieved on a reversed-phase C18 column within 15 min. Detection was performed on a 3200 QTRAP instrument (Sciex) in positive multiple reaction monitoring (MRM) mode. Matrix matched six-point calibrations were generated applying deuterated internal standards for all analytes except HHC. The method was fully validated according to GTFCh guidelines. Linear ranges were 0.5-25 µg/L for THC, 11-OH-THC, HHC and CBD, and 2.0-100 µg/L for THC-COOH, respectively. Limits of detection and limits of quantification were 0.5 and 1.0 µg/L (THC, 11-OH-THC, HHC, CBD), and 2.0 and 4.0 µg/L (THC-COOH). Applicability of plasma calibrations to blood samples was demonstrated. Acceptance criteria for intra- and inter-day accuracy, precision, extraction efficiency and matrix effects were met. No interfering signals were detected for more than 60 pharmaceutical compounds. The presented method is sensitive, specific, easy to handle and does not require high-end equipment. Since its implementation and accreditation according to ISO 17025, the method has proven to be fit for purpose not only in DUID cases but also within post-mortem samples. Furthermore, the design of the method allows for an uncomplicated extension to further cannabinoids if required.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of ∆9-tetrahydrocannabinol (THC), 11-OH-THC, THC-COOH, hexahydrocannabinol and cannabidiol in human plasma and blood by liquid chromatography-tandem mass spectrometry.\",\"authors\":\"Marion Pavlic, Carolin Innerhofer, Florian Pitterl\",\"doi\":\"10.1093/jat/bkae094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ongoing legalization of cannabis for recreational use contributes to increasing numbers not only of incidents of driving under the influence, but within all forensic fields. In addition, newly emerging cannabinoids such as hexahydrocannabinol (HHC) and the increasing use of cannabidiol (CBD) products have to be addressed. The aims of this study were first to extend laboratory analysis capacity for the \\\"established\\\" cannabinoid ∆9-tetrahydrocannabinol (THC) and its metabolites 11-OH-THC and THC-COOH in human plasma/blood, and second to develop analytical procedures concerning HHC and CBD. An LC-MS/MS method based on the available (low-end) instrumentation was used. Samples (250 µL) were prepared by protein precipitation and solid phase extraction. Chromatographic separation was achieved on a reversed-phase C18 column within 15 min. Detection was performed on a 3200 QTRAP instrument (Sciex) in positive multiple reaction monitoring (MRM) mode. Matrix matched six-point calibrations were generated applying deuterated internal standards for all analytes except HHC. The method was fully validated according to GTFCh guidelines. Linear ranges were 0.5-25 µg/L for THC, 11-OH-THC, HHC and CBD, and 2.0-100 µg/L for THC-COOH, respectively. Limits of detection and limits of quantification were 0.5 and 1.0 µg/L (THC, 11-OH-THC, HHC, CBD), and 2.0 and 4.0 µg/L (THC-COOH). Applicability of plasma calibrations to blood samples was demonstrated. Acceptance criteria for intra- and inter-day accuracy, precision, extraction efficiency and matrix effects were met. No interfering signals were detected for more than 60 pharmaceutical compounds. The presented method is sensitive, specific, easy to handle and does not require high-end equipment. Since its implementation and accreditation according to ISO 17025, the method has proven to be fit for purpose not only in DUID cases but also within post-mortem samples. Furthermore, the design of the method allows for an uncomplicated extension to further cannabinoids if required.</p>\",\"PeriodicalId\":14905,\"journal\":{\"name\":\"Journal of analytical toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jat/bkae094\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae094","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

正在进行的娱乐用大麻合法化不仅导致酒后驾车事件增多,而且在所有法医领域也导致此类事件增多。此外,必须解决新出现的大麻素,如六氢大麻酚(HHC)和大麻二酚(CBD)产品的日益使用。本研究的目的首先是扩大实验室对人体血浆/血液中“已建立”的大麻素∆9-四氢大麻酚(THC)及其代谢物11-OH-THC和THC- cooh的分析能力,其次是开发有关HHC和CBD的分析方法。采用基于现有(低端)仪器的LC-MS/MS方法。采用蛋白质沉淀和固相萃取法制备样品(250µL)。15分钟内在反相C18色谱柱上完成色谱分离。在3200 QTRAP仪器(Sciex)上进行检测,采用阳性多重反应监测(MRM)模式。除HHC外,对所有分析物应用氘化内标生成矩阵匹配的六点校准。根据GTFCh指南对该方法进行了充分验证。THC、11-OH-THC、HHC和CBD的线性范围分别为0.5 ~ 25µg/L, THC- cooh的线性范围为2.0 ~ 100µg/L。检测限和定量限分别为0.5、1.0µg/L (THC、11-OH-THC、HHC、CBD)和2.0、4.0µg/L (THC- cooh)。证明了血浆校准对血液样本的适用性。在日内和日间的准确度、精密度、提取效率和基质效应等方面均满足验收标准。60多种药物化合物未检测到干扰信号。该方法灵敏、特异、易操作,不需要高端设备。自实施并通过ISO 17025认证以来,该方法已被证明不仅适用于DUID病例,也适用于尸检样本。此外,如果需要,该方法的设计允许简单地扩展到进一步的大麻素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantification of ∆9-tetrahydrocannabinol (THC), 11-OH-THC, THC-COOH, hexahydrocannabinol and cannabidiol in human plasma and blood by liquid chromatography-tandem mass spectrometry.

Ongoing legalization of cannabis for recreational use contributes to increasing numbers not only of incidents of driving under the influence, but within all forensic fields. In addition, newly emerging cannabinoids such as hexahydrocannabinol (HHC) and the increasing use of cannabidiol (CBD) products have to be addressed. The aims of this study were first to extend laboratory analysis capacity for the "established" cannabinoid ∆9-tetrahydrocannabinol (THC) and its metabolites 11-OH-THC and THC-COOH in human plasma/blood, and second to develop analytical procedures concerning HHC and CBD. An LC-MS/MS method based on the available (low-end) instrumentation was used. Samples (250 µL) were prepared by protein precipitation and solid phase extraction. Chromatographic separation was achieved on a reversed-phase C18 column within 15 min. Detection was performed on a 3200 QTRAP instrument (Sciex) in positive multiple reaction monitoring (MRM) mode. Matrix matched six-point calibrations were generated applying deuterated internal standards for all analytes except HHC. The method was fully validated according to GTFCh guidelines. Linear ranges were 0.5-25 µg/L for THC, 11-OH-THC, HHC and CBD, and 2.0-100 µg/L for THC-COOH, respectively. Limits of detection and limits of quantification were 0.5 and 1.0 µg/L (THC, 11-OH-THC, HHC, CBD), and 2.0 and 4.0 µg/L (THC-COOH). Applicability of plasma calibrations to blood samples was demonstrated. Acceptance criteria for intra- and inter-day accuracy, precision, extraction efficiency and matrix effects were met. No interfering signals were detected for more than 60 pharmaceutical compounds. The presented method is sensitive, specific, easy to handle and does not require high-end equipment. Since its implementation and accreditation according to ISO 17025, the method has proven to be fit for purpose not only in DUID cases but also within post-mortem samples. Furthermore, the design of the method allows for an uncomplicated extension to further cannabinoids if required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
20.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation. Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.
期刊最新文献
Pregabalin concentrations: Establishing 'normal' and 'cause for concern' concentration ranges in post-mortem blood. A validated method for capillary phosphatidylethanol (PEth) 16:0/18:1 quantification with two different 10 µL volumetric absorptive microsample (VAMS) devices in the same set-up. Toxicological evaluation, postmortem case descriptions, and pharmacological activity of N,N-dimethylpentylone and related analogues. Liquid-liquid extraction solvent selection for comparing illegal drugs in whole blood and dried blood spot with LC-MS-MS. Long-term stability of sufentanil quantified by UPLC-MS-MS in human plasma frozen for 11 years at -20°C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1