II 型和 V 型 CRISPR-Cas 系统中 DNA 靶标结合诱导的前 CRRNA 处理。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-01-24 DOI:10.1093/nar/gkae1241
Jiyun Chen, Xiaofeng Lin, Wenwen Xiang, Ying Chen, Yueming Zhao, Linglong Huang, Liang Liu
{"title":"II 型和 V 型 CRISPR-Cas 系统中 DNA 靶标结合诱导的前 CRRNA 处理。","authors":"Jiyun Chen, Xiaofeng Lin, Wenwen Xiang, Ying Chen, Yueming Zhao, Linglong Huang, Liang Liu","doi":"10.1093/nar/gkae1241","DOIUrl":null,"url":null,"abstract":"<p><p>Precursor (pre)-CRISPR RNA (crRNA) processing can occur in both the repeat and spacer regions, leading to the removal of specific segments from the repeat and spacer sequences, thereby facilitating crRNA maturation. The processing of pre-crRNA repeat by Cas effector and ribonuclease has been observed in CRISPR-Cas9 and CRISPR-Cas12a systems. However, no evidence of pre-crRNA spacer cleavage by any enzyme has been reported in these systems. In this study, we demonstrate that DNA target binding triggers efficient cleavage of pre-crRNA spacers by type II and V Cas effectors such as Cas12a, Cas12b, Cas12i, Cas12j and Cas9. We show that the pre-crRNA spacer cleavage catalyzed by Cas12a and Cas9 has distinct characteristics. Activation of the cleavage activity in Cas12a is induced by both single-stranded DNA (ssDNA) and double-stranded DNA target binding, whereas only ssDNA target binding triggers cleavage in Cas9 toward the pre-crRNA spacer. We present a series of structures elucidating the underlying mechanisms governing conformational activation in both Cas12a and Cas9. Furthermore, leveraging the trans-cutting activity of the pre-crRNA spacer, we develop a one-step DNA detection method characterized by its simplicity, high sensitivity, and excellent specificity.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797020/pdf/","citationCount":"0","resultStr":"{\"title\":\"DNA target binding-induced pre-crRNA processing in type II and V CRISPR-Cas systems.\",\"authors\":\"Jiyun Chen, Xiaofeng Lin, Wenwen Xiang, Ying Chen, Yueming Zhao, Linglong Huang, Liang Liu\",\"doi\":\"10.1093/nar/gkae1241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precursor (pre)-CRISPR RNA (crRNA) processing can occur in both the repeat and spacer regions, leading to the removal of specific segments from the repeat and spacer sequences, thereby facilitating crRNA maturation. The processing of pre-crRNA repeat by Cas effector and ribonuclease has been observed in CRISPR-Cas9 and CRISPR-Cas12a systems. However, no evidence of pre-crRNA spacer cleavage by any enzyme has been reported in these systems. In this study, we demonstrate that DNA target binding triggers efficient cleavage of pre-crRNA spacers by type II and V Cas effectors such as Cas12a, Cas12b, Cas12i, Cas12j and Cas9. We show that the pre-crRNA spacer cleavage catalyzed by Cas12a and Cas9 has distinct characteristics. Activation of the cleavage activity in Cas12a is induced by both single-stranded DNA (ssDNA) and double-stranded DNA target binding, whereas only ssDNA target binding triggers cleavage in Cas9 toward the pre-crRNA spacer. We present a series of structures elucidating the underlying mechanisms governing conformational activation in both Cas12a and Cas9. Furthermore, leveraging the trans-cutting activity of the pre-crRNA spacer, we develop a one-step DNA detection method characterized by its simplicity, high sensitivity, and excellent specificity.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1241\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1241","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前体(pre)-CRISPR RNA (crRNA)加工可以发生在重复区和间隔区,导致从重复和间隔序列中去除特定片段,从而促进crRNA成熟。在CRISPR-Cas9和CRISPR-Cas12a系统中,已经观察到Cas效应物和核糖核酸酶对pre-crRNA重复的加工。然而,在这些系统中,没有任何酶的证据表明pre-crRNA间隔物被切割。在本研究中,我们证明了DNA靶标结合触发II型和V型Cas效应物(如Cas12a、Cas12b、Cas12i、Cas12j和Cas9)对pre-crRNA间隔物的有效切割。我们发现由Cas12a和Cas9催化的pre-crRNA间隔层切割具有明显的特点。Cas12a裂解活性的激活是由单链DNA (ssDNA)和双链DNA靶点结合诱导的,而Cas9中只有ssDNA靶点结合才能触发对pre-crRNA间隔物的裂解。我们提出了一系列结构,阐明了控制Cas12a和Cas9构象激活的潜在机制。此外,利用pre-crRNA间隔物的横切活性,我们开发了一种简单、高灵敏度和高特异性的一步DNA检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA target binding-induced pre-crRNA processing in type II and V CRISPR-Cas systems.

Precursor (pre)-CRISPR RNA (crRNA) processing can occur in both the repeat and spacer regions, leading to the removal of specific segments from the repeat and spacer sequences, thereby facilitating crRNA maturation. The processing of pre-crRNA repeat by Cas effector and ribonuclease has been observed in CRISPR-Cas9 and CRISPR-Cas12a systems. However, no evidence of pre-crRNA spacer cleavage by any enzyme has been reported in these systems. In this study, we demonstrate that DNA target binding triggers efficient cleavage of pre-crRNA spacers by type II and V Cas effectors such as Cas12a, Cas12b, Cas12i, Cas12j and Cas9. We show that the pre-crRNA spacer cleavage catalyzed by Cas12a and Cas9 has distinct characteristics. Activation of the cleavage activity in Cas12a is induced by both single-stranded DNA (ssDNA) and double-stranded DNA target binding, whereas only ssDNA target binding triggers cleavage in Cas9 toward the pre-crRNA spacer. We present a series of structures elucidating the underlying mechanisms governing conformational activation in both Cas12a and Cas9. Furthermore, leveraging the trans-cutting activity of the pre-crRNA spacer, we develop a one-step DNA detection method characterized by its simplicity, high sensitivity, and excellent specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Evolving a terminal deoxynucleotidyl transferase for commercial enzymatic DNA synthesis The structure of the MutL-CTD:processivity-clamp complex provides insight regarding strand discrimination in non-methyl-directed DNA mismatch repair The NEXT complex regulates H3K27me3 levels to affect cancer progression by degrading G4/U-rich lncRNAs Virus-derived siRNA: Coronavirus and influenza virus trigger antiviral RNAi immunity in birds NEAT1-mediated regulation of proteostasis and mRNA localization impacts autophagy dysregulation in Rett syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1