临界波动是运动损伤的预警信号?利用足球监测数据验证概念。

IF 4.1 2区 医学 Q1 SPORT SCIENCES Sports Medicine - Open Pub Date : 2024-12-16 DOI:10.1186/s40798-024-00787-5
Niklas D Neumann, Jur J Brauers, Nico W van Yperen, Mees van der Linde, Koen A P M Lemmink, Michel S Brink, Fred Hasselman, Ruud J R den Hartigh
{"title":"临界波动是运动损伤的预警信号?利用足球监测数据验证概念。","authors":"Niklas D Neumann, Jur J Brauers, Nico W van Yperen, Mees van der Linde, Koen A P M Lemmink, Michel S Brink, Fred Hasselman, Ruud J R den Hartigh","doi":"10.1186/s40798-024-00787-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There has been an increasing interest in the development and prevention of sports injuries from a complex dynamic systems perspective. From this perspective, injuries may occur following critical fluctuations in the psychophysiological state of an athlete. Our objective was to quantify these so-called Early Warning Signals (EWS) as a proof of concept to determine their explanatory performance for injuries. The sample consisted of 23 professional youth football (soccer) players. Self-reports of psychological and physiological factors as well as data from heart rate and GPS sensors were gathered on every training and match day over two competitive seasons, which resulted in an average of 339 observations per player (range = 155-430). We calculated the Dynamic Complexity (DC) index of these data, representing a metric of critical fluctuations. Next, we used this EWS to predict injuries (traumatic and overuse).</p><p><strong>Results: </strong>Results showed a significant peak of DC in 30% of the incurred injuries, in the six data points (roughly one and a half weeks) before the injury. The warning signal exhibited a specificity of 95%, that is, correctly classifying non-injury instances. We followed up on this promising result with additional calculations to account for the naturally imbalanced data (fewer injuries than non-injuries). The relatively low F<sub>1</sub> we obtained (0.08) suggests that the model's overall ability to discriminate between injuries and non-injuries is rather poor, due to the high false positive rate.</p><p><strong>Conclusion: </strong>By detecting critical fluctuations preceding one-third of the injuries, this study provided support for the complex systems theory of injuries. Furthermore, it suggests that increasing critical fluctuations may be seen as an EWS on which practitioners can intervene. Yet, the relatively high false positive rate on the entire data set, including periods without injuries, suggests critical fluctuations may also precede transitions to other (e.g., stronger) states. Future research should therefore dig deeper into the meaning of critical fluctuations in the psychophysiological states of athletes.</p><p><strong>Key points: </strong>Complex Systems Theory suggests that sports injuries may be preceded by a warning signal characterized by a short window of increased critical fluctuations. Results of the current study showed such increased critical fluctuations before 30% of the injuries. Across the entire data set, we also found a considerable number of critical fluctuations that were not followed by an injury, suggesting that the warning signal may also precede transitions to other (e.g., healthier) states. Increased critical fluctuations may be interpreted as a window of opportunity for the practitioner to launch timely and targeted interventions, and researchers should dig deeper into the meaning of such fluctuations.</p>","PeriodicalId":21788,"journal":{"name":"Sports Medicine - Open","volume":"10 1","pages":"129"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Fluctuations as an Early Warning Signal of Sports Injuries? A Proof of Concept Using Football Monitoring Data.\",\"authors\":\"Niklas D Neumann, Jur J Brauers, Nico W van Yperen, Mees van der Linde, Koen A P M Lemmink, Michel S Brink, Fred Hasselman, Ruud J R den Hartigh\",\"doi\":\"10.1186/s40798-024-00787-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There has been an increasing interest in the development and prevention of sports injuries from a complex dynamic systems perspective. From this perspective, injuries may occur following critical fluctuations in the psychophysiological state of an athlete. Our objective was to quantify these so-called Early Warning Signals (EWS) as a proof of concept to determine their explanatory performance for injuries. The sample consisted of 23 professional youth football (soccer) players. Self-reports of psychological and physiological factors as well as data from heart rate and GPS sensors were gathered on every training and match day over two competitive seasons, which resulted in an average of 339 observations per player (range = 155-430). We calculated the Dynamic Complexity (DC) index of these data, representing a metric of critical fluctuations. Next, we used this EWS to predict injuries (traumatic and overuse).</p><p><strong>Results: </strong>Results showed a significant peak of DC in 30% of the incurred injuries, in the six data points (roughly one and a half weeks) before the injury. The warning signal exhibited a specificity of 95%, that is, correctly classifying non-injury instances. We followed up on this promising result with additional calculations to account for the naturally imbalanced data (fewer injuries than non-injuries). The relatively low F<sub>1</sub> we obtained (0.08) suggests that the model's overall ability to discriminate between injuries and non-injuries is rather poor, due to the high false positive rate.</p><p><strong>Conclusion: </strong>By detecting critical fluctuations preceding one-third of the injuries, this study provided support for the complex systems theory of injuries. Furthermore, it suggests that increasing critical fluctuations may be seen as an EWS on which practitioners can intervene. Yet, the relatively high false positive rate on the entire data set, including periods without injuries, suggests critical fluctuations may also precede transitions to other (e.g., stronger) states. Future research should therefore dig deeper into the meaning of critical fluctuations in the psychophysiological states of athletes.</p><p><strong>Key points: </strong>Complex Systems Theory suggests that sports injuries may be preceded by a warning signal characterized by a short window of increased critical fluctuations. Results of the current study showed such increased critical fluctuations before 30% of the injuries. Across the entire data set, we also found a considerable number of critical fluctuations that were not followed by an injury, suggesting that the warning signal may also precede transitions to other (e.g., healthier) states. Increased critical fluctuations may be interpreted as a window of opportunity for the practitioner to launch timely and targeted interventions, and researchers should dig deeper into the meaning of such fluctuations.</p>\",\"PeriodicalId\":21788,\"journal\":{\"name\":\"Sports Medicine - Open\",\"volume\":\"10 1\",\"pages\":\"129\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine - Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40798-024-00787-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine - Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40798-024-00787-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Critical Fluctuations as an Early Warning Signal of Sports Injuries? A Proof of Concept Using Football Monitoring Data.

Background: There has been an increasing interest in the development and prevention of sports injuries from a complex dynamic systems perspective. From this perspective, injuries may occur following critical fluctuations in the psychophysiological state of an athlete. Our objective was to quantify these so-called Early Warning Signals (EWS) as a proof of concept to determine their explanatory performance for injuries. The sample consisted of 23 professional youth football (soccer) players. Self-reports of psychological and physiological factors as well as data from heart rate and GPS sensors were gathered on every training and match day over two competitive seasons, which resulted in an average of 339 observations per player (range = 155-430). We calculated the Dynamic Complexity (DC) index of these data, representing a metric of critical fluctuations. Next, we used this EWS to predict injuries (traumatic and overuse).

Results: Results showed a significant peak of DC in 30% of the incurred injuries, in the six data points (roughly one and a half weeks) before the injury. The warning signal exhibited a specificity of 95%, that is, correctly classifying non-injury instances. We followed up on this promising result with additional calculations to account for the naturally imbalanced data (fewer injuries than non-injuries). The relatively low F1 we obtained (0.08) suggests that the model's overall ability to discriminate between injuries and non-injuries is rather poor, due to the high false positive rate.

Conclusion: By detecting critical fluctuations preceding one-third of the injuries, this study provided support for the complex systems theory of injuries. Furthermore, it suggests that increasing critical fluctuations may be seen as an EWS on which practitioners can intervene. Yet, the relatively high false positive rate on the entire data set, including periods without injuries, suggests critical fluctuations may also precede transitions to other (e.g., stronger) states. Future research should therefore dig deeper into the meaning of critical fluctuations in the psychophysiological states of athletes.

Key points: Complex Systems Theory suggests that sports injuries may be preceded by a warning signal characterized by a short window of increased critical fluctuations. Results of the current study showed such increased critical fluctuations before 30% of the injuries. Across the entire data set, we also found a considerable number of critical fluctuations that were not followed by an injury, suggesting that the warning signal may also precede transitions to other (e.g., healthier) states. Increased critical fluctuations may be interpreted as a window of opportunity for the practitioner to launch timely and targeted interventions, and researchers should dig deeper into the meaning of such fluctuations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sports Medicine - Open
Sports Medicine - Open SPORT SCIENCES-
CiteScore
7.00
自引率
4.30%
发文量
142
审稿时长
13 weeks
期刊最新文献
Correction: Sex Differences in Performance and Performance-Determining Factors in the Olympic Winter Endurance Sports. Critical Fluctuations as an Early Warning Signal of Sports Injuries? A Proof of Concept Using Football Monitoring Data. The Use of Extended Reality Technologies in Sport Perceptual-Cognitive Skill Research: A Systematic Scoping Review. Association Between Inter-Limb Asymmetry and Determinants of Middle- and Long-distance Running Performance in Healthy Populations: A Systematic Review. Sex Differences in Performance and Performance-Determining Factors in the Olympic Winter Endurance Sports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1