溶剂和热处理在回收聚烯烃弹性体封装光伏组件材料中的应用。

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Waste Management & Research Pub Date : 2024-12-16 DOI:10.1177/0734242X241305092
Aistis Rapolas Zubas, Inna Pitak, Gintaras Denafas, Egidijus Griškonis, Jolita Kruopienė
{"title":"溶剂和热处理在回收聚烯烃弹性体封装光伏组件材料中的应用。","authors":"Aistis Rapolas Zubas, Inna Pitak, Gintaras Denafas, Egidijus Griškonis, Jolita Kruopienė","doi":"10.1177/0734242X241305092","DOIUrl":null,"url":null,"abstract":"<p><p>High-quality recycling of photovoltaic (PV) modules starts with a delamination process. It aims to remove the encapsulation layer between glass and solar cells. Many studies have investigated the delamination of ethylene-vinyl acetate encapsulant, whereas the delamination of polyolefin elastomer (POE) encapsulation in solar modules remains a research gap. This study presents methods of solvent and thermal treatment for the separation of layers in a PV module encapsulated with POE polymer. Various organic compounds were tested for the solvent treatment. The results showed that most of the solvents did not separate the materials. However, with some of them, polymer swelling was achieved. Glycerol was the only solvent capable of separating glass from multi-material laminate. The separated glass does not include contaminants and is therefore suitable for the use as a secondary material. However, the solar cells remained encapsulated in the polymer, thus additional processing is needed to remove it. The time and solvent temperature for glycerol treatment were measured. The thermal treatment was conducted based on the results of thermogravimetric analyses, which determined the degradation of POE under heating conditions. Thermal treatment at 500°C for 1 hour in an air atmosphere was found to be the effective way to detach PV layers. Glass, solar cells and metal ribbons were separated without polymer contamination and are therefore suitable for further use.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241305092"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of solvent and thermal treatment to recover materials from photovoltaic module encapsulated with polyolefin elastomer.\",\"authors\":\"Aistis Rapolas Zubas, Inna Pitak, Gintaras Denafas, Egidijus Griškonis, Jolita Kruopienė\",\"doi\":\"10.1177/0734242X241305092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-quality recycling of photovoltaic (PV) modules starts with a delamination process. It aims to remove the encapsulation layer between glass and solar cells. Many studies have investigated the delamination of ethylene-vinyl acetate encapsulant, whereas the delamination of polyolefin elastomer (POE) encapsulation in solar modules remains a research gap. This study presents methods of solvent and thermal treatment for the separation of layers in a PV module encapsulated with POE polymer. Various organic compounds were tested for the solvent treatment. The results showed that most of the solvents did not separate the materials. However, with some of them, polymer swelling was achieved. Glycerol was the only solvent capable of separating glass from multi-material laminate. The separated glass does not include contaminants and is therefore suitable for the use as a secondary material. However, the solar cells remained encapsulated in the polymer, thus additional processing is needed to remove it. The time and solvent temperature for glycerol treatment were measured. The thermal treatment was conducted based on the results of thermogravimetric analyses, which determined the degradation of POE under heating conditions. Thermal treatment at 500°C for 1 hour in an air atmosphere was found to be the effective way to detach PV layers. Glass, solar cells and metal ribbons were separated without polymer contamination and are therefore suitable for further use.</p>\",\"PeriodicalId\":23671,\"journal\":{\"name\":\"Waste Management & Research\",\"volume\":\" \",\"pages\":\"734242X241305092\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management & Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0734242X241305092\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241305092","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)组件的高质量回收始于分层过程。它旨在去除玻璃和太阳能电池之间的封装层。许多研究对乙烯-醋酸乙烯封装剂的分层进行了研究,而聚烯烃弹性体(POE)封装在太阳能组件中的分层仍然是一个研究空白。本研究提出了用溶剂和热处理方法分离POE聚合物封装的光伏组件层。对各种有机化合物进行了溶剂处理试验。结果表明,绝大多数溶剂不能使物料分离。然而,其中一些实现了聚合物膨胀。甘油是唯一能够将玻璃从多材料层压板中分离出来的溶剂。分离后的玻璃不含污染物,因此适合作为二次材料使用。然而,太阳能电池仍然被包裹在聚合物中,因此需要额外的处理来去除它。测定了甘油处理的时间和溶剂温度。根据热重分析结果进行热处理,确定了POE在加热条件下的降解情况。在空气中500℃热处理1小时是分离PV层的有效方法。玻璃、太阳能电池和金属带在没有聚合物污染的情况下分离,因此适合进一步使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An application of solvent and thermal treatment to recover materials from photovoltaic module encapsulated with polyolefin elastomer.

High-quality recycling of photovoltaic (PV) modules starts with a delamination process. It aims to remove the encapsulation layer between glass and solar cells. Many studies have investigated the delamination of ethylene-vinyl acetate encapsulant, whereas the delamination of polyolefin elastomer (POE) encapsulation in solar modules remains a research gap. This study presents methods of solvent and thermal treatment for the separation of layers in a PV module encapsulated with POE polymer. Various organic compounds were tested for the solvent treatment. The results showed that most of the solvents did not separate the materials. However, with some of them, polymer swelling was achieved. Glycerol was the only solvent capable of separating glass from multi-material laminate. The separated glass does not include contaminants and is therefore suitable for the use as a secondary material. However, the solar cells remained encapsulated in the polymer, thus additional processing is needed to remove it. The time and solvent temperature for glycerol treatment were measured. The thermal treatment was conducted based on the results of thermogravimetric analyses, which determined the degradation of POE under heating conditions. Thermal treatment at 500°C for 1 hour in an air atmosphere was found to be the effective way to detach PV layers. Glass, solar cells and metal ribbons were separated without polymer contamination and are therefore suitable for further use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
期刊最新文献
A comprehensive review on applications of multi-criteria decision-making methods in healthcare waste management. Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy. Solving the waste bin location problem with uncertain waste generation rate: A bi-objective robust optimization approach. Microplastics in Chinese coastal waters: A mini-review of occurrence characteristics, sources and driving mechanisms. A short bibliographic review concerning biomethane production from wastewater sludge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1