全基因组关联研究中基于人群感知的置换显著性阈值。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae168
Maura John, Arthur Korte, Marco Todesco, Dominik G Grimm
{"title":"全基因组关联研究中基于人群感知的置换显著性阈值。","authors":"Maura John, Arthur Korte, Marco Todesco, Dominik G Grimm","doi":"10.1093/bioadv/vbae168","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Permutation-based significance thresholds have been shown to be a robust alternative to classical Bonferroni significance thresholds in genome-wide association studies (GWAS) for skewed phenotype distributions. The recently published method permGWAS introduced a batch-wise approach to efficiently compute permutation-based GWAS. However, running multiple univariate tests in parallel leads to many repetitive computations and increased computational resources. More importantly, traditional permutation methods that permute only the phenotype break the underlying population structure.</p><p><strong>Results: </strong>We propose permGWAS2, an improved method that does not break the population structure during permutations and uses an elegant block matrix decomposition to optimize computations, thereby reducing redundancies. We show on synthetic data that this improved approach yields a lower false discovery rate for skewed phenotype distributions compared to the previous version and the commonly used Bonferroni correction. In addition, we re-analyze a dataset covering phenotypic variation in 86 traits in a population of 615 wild sunflowers (<i>Helianthus annuus</i> L.). This led to the identification of dozens of novel associations with putatively adaptive traits, and removed several likely false-positive associations with limited biological support.</p><p><strong>Availability and implementation: </strong>permGWAS2 is open-source and publicly available on GitHub for download: https://github.com/grimmlab/permGWAS.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae168"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population-aware permutation-based significance thresholds for genome-wide association studies.\",\"authors\":\"Maura John, Arthur Korte, Marco Todesco, Dominik G Grimm\",\"doi\":\"10.1093/bioadv/vbae168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Permutation-based significance thresholds have been shown to be a robust alternative to classical Bonferroni significance thresholds in genome-wide association studies (GWAS) for skewed phenotype distributions. The recently published method permGWAS introduced a batch-wise approach to efficiently compute permutation-based GWAS. However, running multiple univariate tests in parallel leads to many repetitive computations and increased computational resources. More importantly, traditional permutation methods that permute only the phenotype break the underlying population structure.</p><p><strong>Results: </strong>We propose permGWAS2, an improved method that does not break the population structure during permutations and uses an elegant block matrix decomposition to optimize computations, thereby reducing redundancies. We show on synthetic data that this improved approach yields a lower false discovery rate for skewed phenotype distributions compared to the previous version and the commonly used Bonferroni correction. In addition, we re-analyze a dataset covering phenotypic variation in 86 traits in a population of 615 wild sunflowers (<i>Helianthus annuus</i> L.). This led to the identification of dozens of novel associations with putatively adaptive traits, and removed several likely false-positive associations with limited biological support.</p><p><strong>Availability and implementation: </strong>permGWAS2 is open-source and publicly available on GitHub for download: https://github.com/grimmlab/permGWAS.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae168\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机在表型分布偏斜的全基因组关联研究(GWAS)中,基于换算的显著性阈值已被证明是经典Bonferroni显著性阈值的稳健替代品。最近发表的 permGWAS 方法引入了一种批处理方法,可高效计算基于 permutation 的 GWAS。然而,并行运行多个单变量检验会导致许多重复计算,增加计算资源。更重要的是,只对表型进行置换的传统置换方法会破坏潜在的群体结构:我们提出了 permGWAS2,这是一种改进的方法,它在排列过程中不会破坏种群结构,并使用优雅的块矩阵分解来优化计算,从而减少了冗余。我们在合成数据上表明,与之前的版本和常用的 Bonferroni 校正相比,这种改进的方法能降低偏斜表型分布的错误发现率。此外,我们还重新分析了一个数据集,该数据集涵盖了 615 个野生向日葵(Helianthus annuus L.)种群中 86 个性状的表型变异。这使得我们发现了数十种与可能具有适应性的性状有关的新关联,并删除了几种生物支持有限的假阳性关联。可用性和实现:permGWAS2 是开源的,可在 GitHub 上公开下载:https://github.com/grimmlab/permGWAS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Population-aware permutation-based significance thresholds for genome-wide association studies.

Motivation: Permutation-based significance thresholds have been shown to be a robust alternative to classical Bonferroni significance thresholds in genome-wide association studies (GWAS) for skewed phenotype distributions. The recently published method permGWAS introduced a batch-wise approach to efficiently compute permutation-based GWAS. However, running multiple univariate tests in parallel leads to many repetitive computations and increased computational resources. More importantly, traditional permutation methods that permute only the phenotype break the underlying population structure.

Results: We propose permGWAS2, an improved method that does not break the population structure during permutations and uses an elegant block matrix decomposition to optimize computations, thereby reducing redundancies. We show on synthetic data that this improved approach yields a lower false discovery rate for skewed phenotype distributions compared to the previous version and the commonly used Bonferroni correction. In addition, we re-analyze a dataset covering phenotypic variation in 86 traits in a population of 615 wild sunflowers (Helianthus annuus L.). This led to the identification of dozens of novel associations with putatively adaptive traits, and removed several likely false-positive associations with limited biological support.

Availability and implementation: permGWAS2 is open-source and publicly available on GitHub for download: https://github.com/grimmlab/permGWAS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1