用网格单元校准机制模拟网格单元畸变。

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-09-12 eCollection Date: 2024-01-01 DOI:10.34133/cbsystems.0140
Daniel Strauß, Zhenshan Bing, Genghang Zhuang, Kai Huang, Alois Knoll
{"title":"用网格单元校准机制模拟网格单元畸变。","authors":"Daniel Strauß, Zhenshan Bing, Genghang Zhuang, Kai Huang, Alois Knoll","doi":"10.34133/cbsystems.0140","DOIUrl":null,"url":null,"abstract":"<p><p>The medial entorhinal cortex of rodents is known to contain grid cells that exhibit precise periodic firing patterns based on the animal's position, resulting in a distinct hexagonal pattern in space. These cells have been extensively studied due to their potential to unveil the navigational computations that occur within the mammalian brain and interesting phenomena such as so-called grid cell distortions have been observed. Previous neuronal models of grid cells assumed their firing fields were independent of environmental boundaries. However, more recent research has revealed that the grid pattern is, in fact, dependent on the environment's boundaries. When rodents are placed in nonsquare cages, the hexagonal pattern tends to become disrupted and adopts different shapes. We believe that these grid cell distortions can provide insights into the underlying neural circuitry involved in grid cell firing. To this end, a calibration circuit for grid cells is proposed. Our simulations demonstrate that this circuit is capable of reproducing grid distortions observed in several previous studies. Our model also reproduces distortions in place cells and incorporates experimentally observed distortions of speed cells, which present further opportunities for exploration. It generates several experimentally testable predictions, including an alternative behavioral description of boundary vector cells that predicts behaviors in nonsquare environments different from the current model of boundary vector cells. In summary, our study proposes a calibration circuit that reproduces observed grid distortions and generates experimentally testable predictions, aiming to provide insights into the neural mechanisms governing spatial computations in mammals.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0140"},"PeriodicalIF":10.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism.\",\"authors\":\"Daniel Strauß, Zhenshan Bing, Genghang Zhuang, Kai Huang, Alois Knoll\",\"doi\":\"10.34133/cbsystems.0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The medial entorhinal cortex of rodents is known to contain grid cells that exhibit precise periodic firing patterns based on the animal's position, resulting in a distinct hexagonal pattern in space. These cells have been extensively studied due to their potential to unveil the navigational computations that occur within the mammalian brain and interesting phenomena such as so-called grid cell distortions have been observed. Previous neuronal models of grid cells assumed their firing fields were independent of environmental boundaries. However, more recent research has revealed that the grid pattern is, in fact, dependent on the environment's boundaries. When rodents are placed in nonsquare cages, the hexagonal pattern tends to become disrupted and adopts different shapes. We believe that these grid cell distortions can provide insights into the underlying neural circuitry involved in grid cell firing. To this end, a calibration circuit for grid cells is proposed. Our simulations demonstrate that this circuit is capable of reproducing grid distortions observed in several previous studies. Our model also reproduces distortions in place cells and incorporates experimentally observed distortions of speed cells, which present further opportunities for exploration. It generates several experimentally testable predictions, including an alternative behavioral description of boundary vector cells that predicts behaviors in nonsquare environments different from the current model of boundary vector cells. In summary, our study proposes a calibration circuit that reproduces observed grid distortions and generates experimentally testable predictions, aiming to provide insights into the neural mechanisms governing spatial computations in mammals.</p>\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\"5 \",\"pages\":\"0140\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/cbsystems.0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,啮齿类动物的内侧内侧皮层含有网格细胞,这些细胞会根据动物的位置表现出精确的周期性发射模式,从而在空间中形成明显的六边形图案。由于这些细胞有可能揭示哺乳动物大脑中的导航计算,因此对它们进行了广泛的研究,并观察到了一些有趣的现象,如所谓的网格细胞扭曲。以前的网格细胞神经元模型假定它们的发射场与环境边界无关。然而,最近的研究发现,网格模式实际上依赖于环境的边界。当啮齿类动物被置于非方形笼子中时,六边形模式往往会被打乱,并采用不同的形状。我们相信,这些网格细胞的扭曲可以让我们深入了解网格细胞点燃所涉及的潜在神经回路。为此,我们提出了一种网格细胞校准电路。我们的模拟证明,该电路能够重现之前几项研究中观察到的网格失真。我们的模型还再现了位置细胞的扭曲,并结合了实验观察到的速度细胞的扭曲,这为我们提供了进一步探索的机会。我们的模型还产生了一些可通过实验检验的预测,包括对边界向量单元的另一种行为描述,这种描述可预测在非方形环境中的行为,与当前的边界向量单元模型不同。总之,我们的研究提出了一种校准电路,它能再现观察到的网格扭曲,并产生可通过实验检验的预测,旨在为哺乳动物空间计算的神经机制提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism.

The medial entorhinal cortex of rodents is known to contain grid cells that exhibit precise periodic firing patterns based on the animal's position, resulting in a distinct hexagonal pattern in space. These cells have been extensively studied due to their potential to unveil the navigational computations that occur within the mammalian brain and interesting phenomena such as so-called grid cell distortions have been observed. Previous neuronal models of grid cells assumed their firing fields were independent of environmental boundaries. However, more recent research has revealed that the grid pattern is, in fact, dependent on the environment's boundaries. When rodents are placed in nonsquare cages, the hexagonal pattern tends to become disrupted and adopts different shapes. We believe that these grid cell distortions can provide insights into the underlying neural circuitry involved in grid cell firing. To this end, a calibration circuit for grid cells is proposed. Our simulations demonstrate that this circuit is capable of reproducing grid distortions observed in several previous studies. Our model also reproduces distortions in place cells and incorporates experimentally observed distortions of speed cells, which present further opportunities for exploration. It generates several experimentally testable predictions, including an alternative behavioral description of boundary vector cells that predicts behaviors in nonsquare environments different from the current model of boundary vector cells. In summary, our study proposes a calibration circuit that reproduces observed grid distortions and generates experimentally testable predictions, aiming to provide insights into the neural mechanisms governing spatial computations in mammals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1