gwforge:生成引力波模拟数据的用户友好软件包

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Classical and Quantum Gravity Pub Date : 2024-12-17 DOI:10.1088/1361-6382/ad9b68
Koustav Chandra
{"title":"gwforge:生成引力波模拟数据的用户友好软件包","authors":"Koustav Chandra","doi":"10.1088/1361-6382/ad9b68","DOIUrl":null,"url":null,"abstract":"Next-generation gravitational-wave detectors, with their improved sensitivity and wider frequency bandwidth, will be capable of observing almost every compact binary coalescence signal from epochs before the first stars began to form, increasing the number of detectable binaries to hundreds of thousands annually. This will enable us to observe compact objects through cosmic time, probe extreme matter phenomena, do precision cosmology, study gravity in strong field dynamical regimes and potentially allow observation of fundamental physics beyond the standard model. However, the richer data sets produced by these detectors will pose new computational, physical and astrophysical challenges, necessitating the development of novel algorithms and data analysis strategies. To aid in these efforts, this paper introduces gwforge, a user-friendly, lightweight Python package, to generate mock data for next-generation detectors. gwforge allows users to seamlessly simulate data while abstracting away technical complexities, enabling more efficient testing and development of analysis pipelines. Additionally, the package’s data generation process is optimized using high-throughput systems like HTCondor, significantly speeding up the simulation of large populations of gravitational-wave events. We demonstrate the package’s capabilities through data simulation examples and highlight a few potential applications: performance loss due to foreground noise, bright-siren cosmology and impact of waveform systematics on binary parameter estimation.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"52 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"gwforge: a user-friendly package to generate gravitational-wave mock data\",\"authors\":\"Koustav Chandra\",\"doi\":\"10.1088/1361-6382/ad9b68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next-generation gravitational-wave detectors, with their improved sensitivity and wider frequency bandwidth, will be capable of observing almost every compact binary coalescence signal from epochs before the first stars began to form, increasing the number of detectable binaries to hundreds of thousands annually. This will enable us to observe compact objects through cosmic time, probe extreme matter phenomena, do precision cosmology, study gravity in strong field dynamical regimes and potentially allow observation of fundamental physics beyond the standard model. However, the richer data sets produced by these detectors will pose new computational, physical and astrophysical challenges, necessitating the development of novel algorithms and data analysis strategies. To aid in these efforts, this paper introduces gwforge, a user-friendly, lightweight Python package, to generate mock data for next-generation detectors. gwforge allows users to seamlessly simulate data while abstracting away technical complexities, enabling more efficient testing and development of analysis pipelines. Additionally, the package’s data generation process is optimized using high-throughput systems like HTCondor, significantly speeding up the simulation of large populations of gravitational-wave events. We demonstrate the package’s capabilities through data simulation examples and highlight a few potential applications: performance loss due to foreground noise, bright-siren cosmology and impact of waveform systematics on binary parameter estimation.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad9b68\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9b68","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

下一代引力波探测器具有更高的灵敏度和更宽的频率带宽,将能够观测到第一颗恒星开始形成之前的几乎所有紧凑型双星凝聚信号,使每年可探测到的双星数量增加到数十万个。这将使我们能够通过宇宙时间观测紧凑天体,探测极端物质现象,进行精密宇宙学研究,研究强场动力学状态下的引力,并有可能观测到超越标准模型的基础物理学。然而,这些探测器产生的更丰富的数据集将给计算、物理和天体物理学带来新的挑战,需要开发新的算法和数据分析策略。gwforge 允许用户无缝模拟数据,同时抽象出复杂的技术问题,从而更高效地测试和开发分析管道。此外,该软件包的数据生成过程利用 HTCondor 等高吞吐量系统进行了优化,大大加快了对大量引力波事件的模拟。我们通过数据模拟示例展示了软件包的功能,并重点介绍了一些潜在的应用:前景噪声导致的性能损失、亮砷宇宙学以及波形系统性对二元参数估计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gwforge: a user-friendly package to generate gravitational-wave mock data
Next-generation gravitational-wave detectors, with their improved sensitivity and wider frequency bandwidth, will be capable of observing almost every compact binary coalescence signal from epochs before the first stars began to form, increasing the number of detectable binaries to hundreds of thousands annually. This will enable us to observe compact objects through cosmic time, probe extreme matter phenomena, do precision cosmology, study gravity in strong field dynamical regimes and potentially allow observation of fundamental physics beyond the standard model. However, the richer data sets produced by these detectors will pose new computational, physical and astrophysical challenges, necessitating the development of novel algorithms and data analysis strategies. To aid in these efforts, this paper introduces gwforge, a user-friendly, lightweight Python package, to generate mock data for next-generation detectors. gwforge allows users to seamlessly simulate data while abstracting away technical complexities, enabling more efficient testing and development of analysis pipelines. Additionally, the package’s data generation process is optimized using high-throughput systems like HTCondor, significantly speeding up the simulation of large populations of gravitational-wave events. We demonstrate the package’s capabilities through data simulation examples and highlight a few potential applications: performance loss due to foreground noise, bright-siren cosmology and impact of waveform systematics on binary parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
期刊最新文献
Exploring null geodesic of Finslerian hairy black hole Tilt-to-length coupling in LISA—uncertainty and biases Automated alignment of an optical cavity using machine learning Dynamical similarity in field theories Quantum curvature fluctuations and the cosmological constant in a single plaquette quantum gravity model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1