加权显著映射和拉普拉斯特征映射的鲁棒图像哈希

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-12-16 DOI:10.1109/TIFS.2024.3516552
Xiaoping Liang;Zhenjun Tang;Xianquan Zhang;Xinpeng Zhang;Ching-Nung Yang
{"title":"加权显著映射和拉普拉斯特征映射的鲁棒图像哈希","authors":"Xiaoping Liang;Zhenjun Tang;Xianquan Zhang;Xinpeng Zhang;Ching-Nung Yang","doi":"10.1109/TIFS.2024.3516552","DOIUrl":null,"url":null,"abstract":"Copy detection is crucial for protecting image copyright. This paper proposes a robust image hashing approach via Weighted Saliency Map (WSM) and Laplacian Eigenmaps (LE) (hereafter WSM-LE approach). An important contribution is the WSM construction via the edge map and the saliency map. As the WSM can indicate the interest regions of image, hash calculation based on WSM can provide robustness of our WSM-LE approach. Another contribution is the low-dimensional feature learning by the LE technique. As the LE technique can effectively learn the internal geometric relationships of image, the extracted low-dimensional features can improve discrimination of our WSM-LE approach. In addition, the low-dimensional features are treated as vectors and the vector distances are used to create a compact and encrypted hash. Numerous experiments and comparisons are conducted to confirm the effectiveness and superiority of our WSM-LE approach. The results indicate that our WSM-LE approach has excellent classification and copy detection performances than some baseline approaches.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"665-676"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10802924","citationCount":"0","resultStr":"{\"title\":\"Robust Image Hashing With Weighted Saliency Map and Laplacian Eigenmaps\",\"authors\":\"Xiaoping Liang;Zhenjun Tang;Xianquan Zhang;Xinpeng Zhang;Ching-Nung Yang\",\"doi\":\"10.1109/TIFS.2024.3516552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copy detection is crucial for protecting image copyright. This paper proposes a robust image hashing approach via Weighted Saliency Map (WSM) and Laplacian Eigenmaps (LE) (hereafter WSM-LE approach). An important contribution is the WSM construction via the edge map and the saliency map. As the WSM can indicate the interest regions of image, hash calculation based on WSM can provide robustness of our WSM-LE approach. Another contribution is the low-dimensional feature learning by the LE technique. As the LE technique can effectively learn the internal geometric relationships of image, the extracted low-dimensional features can improve discrimination of our WSM-LE approach. In addition, the low-dimensional features are treated as vectors and the vector distances are used to create a compact and encrypted hash. Numerous experiments and comparisons are conducted to confirm the effectiveness and superiority of our WSM-LE approach. The results indicate that our WSM-LE approach has excellent classification and copy detection performances than some baseline approaches.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"665-676\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10802924\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10802924/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10802924/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

拷贝检测是图像版权保护的关键。提出了一种基于加权显著性映射(WSM)和拉普拉斯特征映射(LE)的鲁棒图像哈希方法(以下简称WSM-LE方法)。一个重要的贡献是通过边缘图和显著性图构建WSM。由于WSM可以指示图像的兴趣区域,基于WSM的哈希计算可以提供我们的WSM- le方法的鲁棒性。另一个贡献是LE技术的低维特征学习。由于LE技术可以有效地学习图像的内部几何关系,提取的低维特征可以提高我们的WSM-LE方法的识别能力。此外,将低维特征视为向量,并使用向量距离创建紧凑和加密的哈希。大量的实验和比较证实了我们的WSM-LE方法的有效性和优越性。结果表明,我们的WSM-LE方法比一些基线方法具有更好的分类和副本检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Image Hashing With Weighted Saliency Map and Laplacian Eigenmaps
Copy detection is crucial for protecting image copyright. This paper proposes a robust image hashing approach via Weighted Saliency Map (WSM) and Laplacian Eigenmaps (LE) (hereafter WSM-LE approach). An important contribution is the WSM construction via the edge map and the saliency map. As the WSM can indicate the interest regions of image, hash calculation based on WSM can provide robustness of our WSM-LE approach. Another contribution is the low-dimensional feature learning by the LE technique. As the LE technique can effectively learn the internal geometric relationships of image, the extracted low-dimensional features can improve discrimination of our WSM-LE approach. In addition, the low-dimensional features are treated as vectors and the vector distances are used to create a compact and encrypted hash. Numerous experiments and comparisons are conducted to confirm the effectiveness and superiority of our WSM-LE approach. The results indicate that our WSM-LE approach has excellent classification and copy detection performances than some baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Einocchio: Efficiently Outsourcing Polynomial Computation with Verifiable Computation and Optimized Newton Interpolation VULSEYE: Detect Smart Contract Vulnerabilities via Stateful Directed Graybox Fuzzing Adversarial Example Soups: Improving Transferability and Stealthiness for Free Enhancing Federated Learning Robustness using Locally Benignity-Assessable Bayesian Dropout Differential Privacy with Higher Utility by Exploiting Coordinate-wise Disparity: Laplace Mechanism Can Beat Gaussian in High Dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1